Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Understanding how brain and heart cells process and generate electrical signals could lead to a new understanding of neurological and heart disease. Until a few years ago, however, it simply wasn’t possible to make electrical recordings at the level of single cells. In 2006, Harvard researchers used nanowire transistors to measure electrical signals at 50 points along a single neuron. Now the same research group has developed a new nanowire recording system and have used it to capture some of the most precise, high-quality electrical recordings ever made from heart cells.

The Harvard work, led by chemistry and chemical-biology professor Charles Lieber, is “at the forefront of research in integrating nanowire nanotechnology and bioscience,” says Zhong Lin Wang, Regents Professor at the Center for Nanostructure Characterization, at Georgia Tech.

Nanoscale devices that interface electrically with cells could lead not only to a better understanding of the origins of disease, but also to better neural prostheses and other medical devices.

Lieber says that the goal of his lab is to make electrical devices that interface with biological tissues on a biologically meaningful scale–in other words, on the nanoscale. Cells process electrical signals as those signals travel down the length of a cell; the subcellular electrical processing that takes place in neurons, for example, plays an important role in normal and abnormal learning and memory. “If one wants to understand how signals propagate and why it doesn’t happen in the way it should” in diseases such as epilepsy or heart arrhythmias, “you need to measure at a fine scale,” Lieber says.

To create such fine-scale recordings, Lieber uses transistors made of silicon wires just tens of nanometers in diameter. The nanowires are grown in a reaction chamber, then aligned on a silicon wafer and supplied with metal electrodes and interconnects. Until now, researchers have grown cells on top of a chip in order to interface nanowires with cells.

“We recognized that one doesn’t necessarily have to grow the cells on the substrate,” says Lieber. Instead, in research described online this week in the Proceedings of the National Academy of Sciences, the Harvard group grows cells on sheets of flexible polymer. Nanowires themselves are cell friendly, but a rigid silicon wafer is not the friendliest place for biological tissues to grow. By growing the tissues separately on plastic substrates, the Harvard researchers can make better tissue samples to work with. Better samples means that more meaningful measurements. And because the Harvard researchers can position the tissue over the nanowires under a microscope, they can choose particular tissue areas or particular cells from which to record. Being able to bring an already growing group of cells in contact with a recording array will also be critical for making future implants.

“The modular approach is quite elegant,” says Peidong Yang, a professor of chemistry at the University of California, Berkeley. Yang has used nanowire arrays to study the effects of electrical inputs on stem-cell development.

3 comments. Share your thoughts »

Credit: Charles Lieber
Video by PNAS

Tagged: Computing, Materials, health, heart, cells, nanowires, heart cells, nanowire circuit

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me