Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Lung transplant offers hope of a longer life for patients with end-stage respiratory diseases such as emphysema and cystic fibrosis, with some surviving for years following surgery. But due to chronic shortages of viable organs for transplant, only about 25 percent of patients on waiting lists receive new lungs. However, a new out-of-body lung-repair technique developed at the Toronto General Hospital may dramatically increase the number of lungs that can be used in transplants and improve surgical outcome.

In an operating room at the hospital, the technology can keep a pair of human lungs slowly breathing inside a glass dome attached to a ventilator, pump, and filters. The lungs are maintained at normal body temperature of 37 °C and perfused with a bloodless solution that contains nutrients, proteins, and oxygen. The organs are kept alive in the machine, developed with Vitrolife, for up to 12 hours while surgeons assess function and repair them.

Normally, as few as one in ten lungs available for transplant is usable, and even those may not work properly when grafted. “The system allows you to assess the lungs, to diagnose what’s wrong with them, and then repair them,” says Shaf Keshavjee, who directs the hospital’s Lung Transplant Program. “Therefore, we’re transplanting lungs that have a more predictable outcome.”

The shortage of donor organs is partly the result of outdated preservation techniques. Organs are conventionally cooled after harvesting, which inhibits their function and poses risk of injury. While the Toronto system isn’t the first to eschew cooling preservation for lungs, it improves upon a technique to recondition nonviable lungs developed at Lund University Hospital, in Sweden. The Toronto system can maintain the lung outside the body for much longer and poses less risk of injury, according to the researchers. “We’re keeping it in a protective setting without adding more injury so it can begin to heal,” says Keshavjee.

An effective lung preservation and repair system would have a major impact on the lives of thousands of patients in the United States waiting for donor lungs. Keshavjee says that the number of acceptable donor lungs can be doubled through the system.

Following years of lung transplant and repair experiments on lungs in mice, rats, and pigs, last December, Keshavjee’s team used the technique to successfully transplant unacceptable human donor lungs into a 56-year-old man with respiratory illness. Since then, six other patients have received lungs treated with the technique as part of a clinical trial. “They’ve all done superbly, every single one of them,” says Keshavjee. “We’re now able to use lungs that we couldn’t use before.”

2 comments. Share your thoughts »

Credit: Toronto General Hospital
Video by Toronto General Hospital

Tagged: Biomedicine, health, medicine, transplant, genetic therapy, lungs

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me