Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The two papers “show there is a path to create graphene from nanotubes,” says Yu-Ming Lin, a researcher in the nanoscale science and technology group at IBM’s Watson Research Center, in New York. Dai developed the previous standard for making graphene nanoribbons: breaking graphene sheets into smaller pieces, including nanoribbons, by exposing them to intense sound waves (a relatively low-yield method). “There are pros and cons for each [new] method,” says Dai.

Tour’s unzipping method yields graphene in bulk, which is an advantage from a manufacturing perspective. But “[Dai]’s going to have better control,” admits Tour. The width of the Rice group’s nanoribbons is determined by the diameter of the nanotubes that they come from. In contrast, using the Stanford team’s technique, it’s possible to finely control the width of the nanoribbons. In today’s publication, Dai and his colleagues describe nanoribbons six nanometers wide, but he says that they have subsequently made narrower and more semiconducting ones. “There might be an optimum width; that needs to be investigated,” he says.

Tour’s nanoribbons are easy to process because they are graphene oxide, which is soluble in water. “You can use shear force to align them like logs in a river lining up in parallel,” says Tour. “You can paint them down, and they will align.” Tour adds that the nanoribbons can be made into devices using ink-jet printing. Once the ribbons are in place on a chip, they’re treated with hydrogen at high heat to remove the oxygen at their edges and turn them into semiconductors. Without this step, the ribbons are insulators.

The Stanford research was funded by Intel, and Tour says that he is in talks with companies interested in licensing his manufacturing method as well as devices made with the nanoribbons.

0 comments about this story. Start the discussion »

Credit: Rice University

Tagged: Computing, Materials, carbon nanotubes, transistors, graphene, nanomaterials, chemistry, graphene-based transistors

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me