Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Researchers at Seagate have now demonstrated that heat-assisted magnetic recording can be done reliably. They used a magnetic-writing head outfitted with near-field optics to write data to a hard disk coated with stable recording media. Today in the journal Nature Photonics, the researchers describe their system and report recording data at densities of 250 gigabits per square inch.

This density only matches that of the hard disks found in today’s laptops. But that’s not the point, say researchers. “This is a tour de force in the science and engineering of this technology,” says Schlesinger.

The Seagate prototype is made almost entirely out of components that are found in today’s hard drives, says Ed Gage, executive director of research on recording systems at the company. The prototype uses a different recording medium than do today’s hard disks, but it can be laid down using the same processes already employed in the industry. Likewise, the writing head is the same as those already being made by the company, except for the addition of the optics.

The company now plans to bring the recording density up. “The experimental system needs additional engineering work,” says William Challener, another researcher on the Seagate project. The size of light achieved in the prototype was about 70 nanometers; other researchers have demonstrated 20 nanometers in the lab, and the company hopes to match this. There also remains some work to be done on integrating an electronic control system for the laser into a hard drive.

Meanwhile, others are working on a second technology for boosting magnetic storage. This approach, called bit patterning, involves increasing the density and stability of magnetic bits by creating patterned arrays of very regularly shaped, nanoscale magnetic grains.

“These approaches each have very different strengths and weaknesses,” says Barry Schechtman, executive director emeritus of the Information Storage Industry Consortium. “But there’s a strong consensus that five to ten years out, only one won’t be enough. We’ll need a combination of bit patterning and heat-assisted magnetic recording.”

1 comment. Share your thoughts »

Credit: Seagate

Tagged: Computing, Materials, memory, data storage, optical technology, magnetic, hard disk

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me