Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

This setup is commonly used to study addiction: when a drug such as cocaine or amphetamine is consistently administered in the reward room, a mouse learns to associate that room with the reward and later chooses to spend most of its time there.

“What we found, very strikingly, was that this worked,” says Deisseroth. One of the optoXRs, built from a receptor protein that normally responds to adrenaline and noradrenaline, produced results much like those seen with drug-based rewards. When loosed after training, mice with this optoXR strongly preferred to spend time in the reward room, where they had received light pulses activating their nucleus accumbens. The results of the study were published this week in Nature.

Many of the same proteins that Deisseroth’s team activated with light can be targeted by drugs. But light has a number of advantages over drugs, says Michael Häusser, a professor of neuroscience at University College London, who was not involved in the research. While drugs take time to work and linger after administration, light allows for exquisite control over timing. And while drugs don’t pick and choose which cells to affect, optoXRs can be genetically engineered to be expressed in only a specific type of cell.

The hybrid proteins represent a new molecular toolbox with applications beyond drug addiction and the brain’s reward system. “There are all kinds of really cool games you can play with these new molecular tools to look at aspects of signaling pathways and how they interact,” says Häusser. For example, they open the door to studying more mysterious receptor proteins, which can’t be activated pharmaceutically and whose function is not well understood. “For some of them,” says Häusser, “our toolbox for manipulating them is limited. So this gives us a fantastic new handle on these receptor classes, and allows us to manipulate them in a really powerful way.”

1 comment. Share your thoughts »

Credit: Raag Airan et al., Stanford University

Tagged: Biomedicine, light, genetic engineering, neurology, neuron, addiction, light-sensitive proteins

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me