Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Cells coated with sticky bits of DNA can self-assemble into functional three-dimensional microstructures. This bottom-up approach to tissue engineering, developed by scientists at Lawrence Berkeley National Laboratory and the University of California, Berkeley, provides a new solution to one of field’s biggest problems: the creation of multicellular tissues with defined structures. Unlike top-down methods, in which scientists build cell structures on scaffolds, the new technique allows tissue engineers to dictate the precise geometric interactions of individual cells.

Researchers started with two cell types–one that secretes a protein, called a growth factor, which the other requires in order to grow. Coauthor Zev Gartner, now a pharmaceutical chemist at the University of California, San Francisco, decorated the cells with snippets of single-stranded DNA, attached using specialized sugars incorporated into the cell membrane. The two cell types carried complementary strands of DNA, which acted as a sort of Velcro. When the different cells were combined, their complementary DNA fragments joined into double strands, linking the cells together. Joined to their protein producing partners, the protein-dependent cells flourish. Without the DNA coating, the two cell types can’t communicate, and the dependent cells die.

By varying the relative concentrations of the two cell types, the researchers could maneuver the cells into particular configurations. For instance, when the cells were combined in a one-to-one ratio, they simply formed pairs. But when the growth-factor-dependent cells vastly outnumbered their counterparts, they formed characteristic three-dimensional clusters with a single growth-factor-secreting cell in the center. The results appeared Monday in the early online edition of Proceedings of the National Academy of Sciences.

“This approach provides a new way of recreating tissue complexity,” says Ali Khademhosseini, an assistant professor at Harvard-MIT’s Division of Health Sciences and Technology and Harvard Medical School, who was not involved in the study. Most tissue-engineering methods produce three-dimensional structures with the help of scaffolding materials.

Once the microstructures had formed, Gartner and his colleague Carolyn Bertozzi, director of the Molecular Foundry nanoscience research facility at Berkeley Lab, trapped them in a gel and imaged them in three dimensions using a fluorescence microscope. Because the cell-surface DNA isn’t stable in the long term, it’s not yet clear how long the structures will hold up on their own. The researchers are currently investigating whether the linked cells will begin to generate their own natural adhesion molecules to keep them attached once the DNA links are gone.

So far these microstructures are rudimentary–far from the structural sophistication of a whole organ. But by tweaking the ratio of cell types, the density of DNA on the cells’ surfaces, and the complexity of the DNA sequences, Gartner and Bertozzi hope to build larger and more intricate assemblies. “By playing around with these variables, we can bias the type of structure that we’re making,” says Gartner.

0 comments about this story. Start the discussion »

Credit: Bertozzi Lab

Tagged: Biomedicine, DNA, tissue engineering, cells, tissue

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me