Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The researchers can change the tubes’ diameters and the rate at which they grow by changing the concentration of the fluorescent molecules. The tubes range from 1 to 120 micrometers wide. By applying a voltage, they can make the tubes grow in specific directions. They can make branched tubes in two different ways. One is to let two tubes collide, which makes a single tube emerge at the collision point. The other is to puncture a tube with a micromanipulator needle so that the material flows out and grows another branch. To show that the tubes are hollow and can carry liquids, the researchers inject fluorescent dye through them.

Kogerler says that the work is promising because the tubes maintain their structure and do not decompose. Also, they have a relatively high surface-to-volume ratio, which is beneficial for catalysis and sensing applications. But it is not yet evident that they will be ideal for these applications. That is because the surface of the tubes is not just made of interlinked polyoxometalate molecules: it also contains positively charged fluorescent molecules. “The question is, would you gain any kind of reactivity from that?” Kogerler asks.

Kogerler says that it would be really interesting if the researchers could find a way to grow similar tubes in the nanometer range. Metal-oxide compounds are known to form structures on this scale, and the approach would yield even larger surfaces.

0 comments about this story. Start the discussion »

Credit: Lee Cronin, University of Glasgow

Tagged: Computing, Materials, microfluidics, catalysts, microfluidic devices, chemical sensors, lab-on-a-chip

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me