Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Researchers have discovered a way to grow tiny micrometer-scale tubes from materials that act as catalysts and gas sensors. By making networks of these tubes, the researchers say that they could create compact lab-on-a-chip devices in which the channels themselves are made of the catalyst or sensing material. “You could throw chemicals through a very high surface area tube and potentially do very efficient catalysis,” says Lee Cronin, a professor of chemistry at the University of Glasgow, U.K., who led the work.

In a paper published in the journal Nature Chemistry, Cronin and his colleagues report that they can control the diameters of the tubes and the speed with which they grow. What is more, by using simple tricks, they can control the tubes’ direction of growth and can merge two tubes together to make different structures.

Growing microfluidic devices this way could be simpler than using current lithography techniques, says Cronin. “We’re able to grow tubes in the same way you control lines on an Etch A Sketch,” he says. “You just grow very quickly in a few seconds the device you want.”

The inorganic crystals that the researchers use belong to a class of chemicals known as polyoxometalates. These negatively charged clusters of metal and oxygen atoms are excellent catalysts for many different reactions in the chemical industry. They are also good at sensing and adsorbing gases, and are used to remove toxic compounds like nitrogen oxides and sulphur dioxide from flue-gas streams. By using different metal atoms, researchers can create polyoxometalates with various chemical properties. “Polyoxometalates have large structural diversity and versatility, as well as a lot of options to modify physical and chemical behavior,” says Paul Kogerler, a professor of chemistry at RWTH Aachen University, in Germany.

To create their microtubes, the Glasgow researchers use crystals containing tungsten. When they put these negatively charged metal-oxide crystals in water and add positively charged fluorescent molecules, the crystals start to sprout tubes in just a few seconds.

Cronin explains that the positive and negative molecules join up to form a membrane on the crystal’s surface. The pressure inside this membrane builds up until it ruptures and the metal-oxide material inside pours out in a jet. As it streams out, it automatically starts to form a hollow tube through which more and more material can flow out. The tube grows until all that’s left of the crystal is the hollow membrane shell.

0 comments about this story. Start the discussion »

Credit: Lee Cronin, University of Glasgow

Tagged: Computing, Materials, microfluidics, catalysts, microfluidic devices, chemical sensors, lab-on-a-chip

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me