Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

It sounds almost too good to be true: add a few bugs to food scraps and waste water to generate clean hydrogen fuel. But over the past few years, researchers have been gradually working toward this promising scheme for producing hydrogen.

Now, with the help of an unassuming stainless-steel brush, microbial electrolysis cells (MECs) have taken another step forward. The steel brush can be used to replace the expensive platinum normally employed in the electrolysis cell’s cathode, slashing costs by more than 80 percent.

Hydrogen is an appealing, environmentally friendly fuel because burning it creates only water as a waste product. MECs harness the electrons produced by certain bacteria as those bacteria feed on biodegradable material. The bacteria sit on an electrode–the anode–as they metabolize organic matter in an oxygen-devoid chamber. Not being able to react with oxygen, the electrons travel from the anode to the counter-electrode–the cathode–where they combine with protons to form hydrogen.

In late 2007, a team led by Bruce Logan, Kappe professor of environmental engineering at Pennsylvania State University, showed that they could improve the efficiency of this process: by adding a small jolt of electricity (0.25 volts) at the cathode. Until now, however, the researchers have relied on a platinum catalyst on the cathode to make the process fast enough.

“The need to use a precious metal catalyst had been holding back further development of the technique, but now we have found a way to do it without platinum,” says Logan.

Compared with platinum, which acts as an effective catalyst when applied in a thin layer to a flat piece of carbon cloth, a simple piece of stainless steel is two-thirds less effective. But when Logan’s team increased the surface area of the stainless-steel cathode by arranging the material in the form of a high-density bristle brush, hydrogen production rates increased to values that matched or even exceeded those of the platinum cathode. While the platinum cathode costs around 15 cents, the stainless-steel brush only set the researchers back 3 cents.

5 comments. Share your thoughts »

Credit: Bruce Logan

Tagged: Energy

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me