Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »


Beam forming at Wi-Fi frequencies couldn’t happen without the 4x4 antenna scheme , says Goldsmith. This is because antennas don’t just send and receive data: they can also adapt to the channel characteristics and avoid interference. In fact, if there are two data streams, in a 4x4 antenna, then there will be extra antennas to optimize the beam’s path and to correct for disruption. “Having four antennas allows you to mitigate the impact of interference and point the beam in the optimal directions,” Goldsmith says.

Beam forming is not new, but Goldsmith and her engineers faced new challenges in ensuring that the technology would comply with the Wi-Fi standard. For one thing, they had to make sure that the chip would adjust its power levels at the antennas receiving the data quickly enough–within four microseconds, as dictated by the standard–when it went from standard Wi-Fi mode to beam-forming mode. Without giving details, Goldsmith says that her team developed algorithms that were able to handle the power adjustment more rapidly.

Other tricks include developing beam-forming algorithms to manage all the environmental information, and making sure that the connection can be corrected quickly enough when interference is detected, so that there’s no lag in wireless speed.”Beam forming is indeed a good way of improving capacity,” says Jan Rabaey, a professor of electrical engineering and computer sciences at the University of California, Berkeley. “It’s definitely something that will happen.”

Rabaey notes, however, that antennas operating at Wi-Fi frequencies must be separated by centimeters, due to the properties of the frequencies used, which imposes a lower limit on the size of the antenna arrays that can be used. Still, he suspects that this sort of chip could eventually find its way into laptops and even PDAs, if the chips can be engineered to fit.

To start with, Quantenna plans to focus on getting its chips in base stations and flat-screen televisions, considered the next big frontier in wireless. The company is working with traditional home-networking vendors, says Goldsmith, and its products will be available in Asian markets in the coming months.

0 comments about this story. Start the discussion »

Credit: Quantenna

Tagged: Computing, wireless, networks, Wi-Fi, radio, Wimax

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »