Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

George Pappas, a professor of electrical and systems engineering at the University of Pennsylvania and an expert in distributed control systems, says that swarm logic is a natural fit for energy applications. “REGEN is ahead of the curve on this,” says Pappas.

Operation within a building is one thing, but less certain is whether swarm logic can be trusted to manage the grid itself. Chassin says that the engineering community is understandably wary of decentralized or “emergent” control systems for the grid because, while they work remarkably well in certain applications, the approach is not well tested.

Kerbel first came up with the idea of using a swarm algorithm to manage power consumption in 2005. “We were politely told that this style of control just isn’t ready and requires far more academic research,” he says. “It’s difficult to think outside the command-and-control box and allow this leap of faith–that is, relinquishing decision-making capabilities to individual nodes of the collective.”

It’s a bias that Herb Sinnock, manager of the Centennial Energy Institute, in Toronto, admits to having. He says that engineers typically want constant feedback so that they can measure system operation and make refinements. REGEN’s technology dispenses with all that, but he notes that its application will allow for some mistakes. “It’s not like they’re positioning control rods in a nuclear reactor core. We’re talking about affecting the temperature in a room by half a degree, so there’s room for error,” says Sinnock.

Sinnock’s institute has been working with REGEN to evaluate the performance of its devices in the field. Tests have so far demonstrated that building owners–of hospitals, hotels, shopping malls, factories, and other large facilities–could save as much as 30 percent on their peak-demand charges. Those savings, REGEN claims, more than cover the cost of renting the devices, which is an option for major electricity consumers reluctant to buy the technology up front. If the devices are purchased, the payback is less than three years, says Kerbel.

The simplicity of the installation is what impresses Sinnock most. “In a few hours, they can have the devices installed and figuring out their environment and surroundings,” he says. Pappas, meanwhile, says that he expects there will be much more interest in this type of application over the coming years, pointing to a U.S. economic stimulus package that calls for more investment in energy efficiency and smart-grid technologies. “A lot of the big impact and low-hanging fruit is going to come from using this approach,” he says.

5 comments. Share your thoughts »

Credit: REGEN Energy

Tagged: Communications, Energy, electricity, power, nodes

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me