Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Choset and his students have engineered a highly articulated robotic arm that consists of multiple actuated joints, which give the robot a snakelike flexibility. Each joint has two degrees of freedom that, working together, allow the robot to flex, retract, and twist into different configurations, much like a live snake.

Because it’s impossible for a person to simultaneously control all the joints on the snake, the team developed software to enable precise control of the robot’s movements via a joystick. In lab tests, researchers could successfully guide the arm, mounted with a camera, up and down a skeleton’s body using the joystick and watch the resulting pictures on a laptop.

Choset has affixed various physiological sensors to the robotic arm, including a detector for carbon dioxide and oxygen to test whether a person is breathing. He says that the robot can also sport an oxygen mask and, if connected to the stretcher’s onboard ventilator, can potentially maneuver over a soldier’s mouth and deliver oxygen, without the help of a medic.

In the future, Choset hopes to add an ultrasound component to the robot, so that it can quickly scan a soldier for signs of internal bleeding. His team is collaborating with researchers at Georgetown University to develop an ultrasound probe for the robotic arm. To perform ultrasound, Choset says that the robot would require a certain amount of strength and delicacy so that it can determine how much force to apply to gently press a probe against the skin. He and his students plan to explore this robotic challenge in the future, along with other applications for the snake robot.

Sylvain Cardin, a senior medical robotics scientist at TATRC, suggests that there may be other military applications for the robotic arm. “It could be on a small vehicle you could send into the field, and the medic could attend the patient in a remote location,” says Cardin. “So you could be under fire, and could send this little vehicle out with the snake arm, and be able to attend the casualty without showing everyone we’re attending the casualty.”

Gain the insight you need on robotics at EmTech MIT.

Register today

2 comments. Share your thoughts »

Credit: Howie Choset/Carnegie Mellon University
Video by Howie Choset/Carnegie Mellon University

Tagged: Computing, Biomedicine, robotics, sensors, robotic arm, battlefield technology

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »