Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

One of cancer’s cleverest tricks is its ability to hide from the immune system. A new approach to cancer treatment called immunotherapy could spare patients at least some of the grueling battery of chemotherapy treatments by retraining the body’s own defenders–the cells of the immune system–to recognize and destroy tumors. Now researchers at Harvard University have developed a simple way to do this inside the body: a polymer implant attracts and trains immune-system cells to go after cancer.

The experimental approach has shown great success in animal studies, increasing the survival rate of mice with a deadly melanoma from 0 to 90 percent. The implant could also be used to treat diseases of the immune system such as arthritis and diabetes, and, potentially, to train other kinds of cells, including stem cells used to repair damage to the body.

The usual methods for cancer immunotherapy are complex and have had little success in clinical trials, says David Mooney, a professor of bioengineering at Harvard who leads the development of the implant. First, immune cells called dendritic cells are removed from a patient’s body; then they’re exposed to chemical activators and cancer-specific antigens. These cells are then injected back into the patient, where they should, in theory, travel to the lymph nodes and activate another group of cells called T cells, training them to attack a tumor. But dendritic cells are fragile, and while this approach has increased survival in mice, it hasn’t caused tumors to shrink in clinical trials with humans.

“When you transplant the cells, virtually all of them die, and you have very little control over what they do when they’re reimplanted,” says Mooney. So his team took a different approach to the problem, realizing that “perhaps we could do all this inside the body.”

Mooney and his research group constructed a polymer that can do inside the body what complex immunotherapies do outside it. They describe the design and performance of an implant for melanoma in the current issue of Nature Materials. The polymer has a history of safe use in humans (in biodegradable sutures, for example). First, it attracts dendritic cells by releasing a kind of chemical signal called a cytokine. Once the cells are there, they take up temporary residence inside spongelike holes within the polymer, allowing time for the cells to become highly active.

The polymer carries two signals that serve to activate dendritic cells. In addition to displaying cancer-specific antigens to train the dendritic cells, it is also covered with fragments of DNA, the sequence of which is typical of bacteria. When cells grab on to these fragments, they become highly activated. “This makes the cells think they’re in the midst of infection,” Mooney explains. “Frequently, the things you can do to cells are transient–especially in cancer, where tumors prevent the immune system from generating a strong response.” This extra irritant was necessary to generate a strong response, the Harvard researchers found.

When implanted just under the skin of mice carrying a deadly form of melanoma, the polymer increased their survival rate to about 90 percent. By contrast, conventional immunotherapies that require treating the cells outside the body are 60 percent effective, says Mooney.

0 comments about this story. Start the discussion »

Credit: Omar Ali

Tagged: Biomedicine, Materials, cancer, polymers, implantable device, biomaterial, melanoma, immunotherapy

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me