Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Researchers at the University of Toronto, in Ontario, have increased the speed of their new color-changing material tenfold. The material, which uses photonic crystals, reflects bright, intense light of any color from red to blue, switching color based on the voltage applied to it. The technology could enable brighter, flexible color displays for electronic readers and billboards.

“To get color changes that go across from UV all the way to near infrared–it’s the only material on the planet that can do it,” says chemistry professor Geoffrey Ozin, who led the new work. “All I’m doing here is with one material tuning the voltage.”

Reading devices such as the Amazon Kindle, the Sony Reader, and Plastic Logic’s new reader use a black-and-white e-paper from Boston’s E Ink. E-paper reflects light instead of emitting it, which makes it less power hungry and easier to read in bright sunlight. Displays using a color version of E Ink’s technology are expected to reach the market in the next few years, but their pixels will be divided into three subpixels, with red, green, and blue filters. Light from the subpixels is mixed in varying intensities to produce different colors. “That means you just have one-third of the [pixel] area that displays red,” says Jacques Angele, cofounder of the French e-paper company Nemoptic. “So you reduce brightness by a factor not far from three.”

The key advantage of the new technology is that the photonic crystal making each pixel can be tuned to emit different colors. “In principle, they should be able to get good brightness more similar to printed paper, compared to current e-paper technology,” Angele says. Increasing the speed with which the material changes color moves it one step closer to practical applications.

The Toronto researchers reported the new version of the material in an online Angewandte Chemie paper. In addition to changing colors more rapidly, the material also covers a much wider color spectrum.

Opalux, the Toronto-based startup commercializing the technology, is already using the new material to make color-changing displays. The display is currently made on glass but could easily be made on flexible substrates, says Andre Arsenault, coauthor of the paper and cofounder of Opalux.

A photonic crystal is any nanostructure with a regular pattern that influences the motion of photons. By changing the structure slightly, you can change the color of light that the crystal reflects. Previously, the Canadian researchers made photonic crystals using stacks of hundreds of silica nanospheres embedded in a polymer. They sandwiched these stacks along with an electrolyte–a material that conducts ions–between two transparent electrodes coated on glass. When different voltages are applied, the electrolyte goes in and out of the polymer, which swells and shrinks, altering the distance between the nanospheres. This changes the wavelength of the reflected light.

0 comments about this story. Start the discussion »

Credit: Daniel Puzzo, University of Toronto
Video by Opalux

Tagged: Computing, Materials, materials, light, e-paper, flexible displays, E ink, Plastic Logic, Amazon Kindle, photonic crystals, electronic paper, Sony Reader

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me