Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Eventually, scientists would like to shrink robots down far enough so that they can travel through the blood to directly target tumors. While the work’s still in early stages, researchers at the École Polytechnique de Montréal have been able to attach naturally magnetic, swimming bacteria onto microscopic beads, creating rudimentary “nanobots” and steering them using MRIs. The researchers hope that these hybrid bacteria bots can eventually be carted through the blood on a larger, magnetically controlled vehicle. (See “Voyage of the Bacteria Bots.”)

Flying Learners
Robots have always been of particular interest for military applications, in the hopes that sophisticated robots can perform reconnaissance, help soldiers in the field, and carry out riskier tasks. Recently, scientists at Stanford University have developed a system to teach unmanned aerial vehicles (UAVs) how to learn new maneuvers by watching another helicopter do it. (See “Teaching Robots New Tricks.”) The learning system could extend to other robots. Other research seeks to use robotic aircraft to improve weather forecasting. (See “Robotic Weather Planes.”) Finally, scientists also seek to emulate nature when it comes to fliers. Researchers have looked to model dragonflies in particular, because they can stop and hover in midair, an ability that might be useful for a camera or reconnaissance drone. (See “The Flight of Dragonfly Robots.”)

Certainly, as electronic components continue to grow cheaper and smaller, and researchers are able to give robots more flexibility to manage in the real world, bots will continue to move out of the factory and into the home, hospital, and field to fill the gaps where needed.

0 comments about this story. Start the discussion »

Credit: Dov Katz

Tagged: Computing, Communications, Robotics, robotics, robots, robotic arm, robotic assistant, robotic insect, biomedical robots, surgical robots

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me