Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Robotic research marched ahead this year: biomedical robots performed less invasive and more complex experimental surgeries, winged robots copied each other to perform potential military maneuvers, and researchers began work on robots that may even be able to travel through the blood to zap a tumor. Some highlights:

Grab and Grasp
Robotic grasping and learning is becoming sophisticated enough that people may soon be able to simply gesture to any object that they want and, without needing to program specifics, rely on a robot to retrieve it. A robot demonstrated this year at Georgia Tech, El-E (pronounced “Ellie”), a wheeled, one-armed robot, follows a green laser pointer to retrieve objects. (See “A Robotic Helping Hand.”) Later in the year, the group gave El-E new abilities based on how dogs respond to humans. (See “Robot Mimics a Canine Helper.”) Another grasper, the UMass Mobile Manipulator–UMan, for short–demonstrated that it could learn how to use new objects. (See “A Robot That Learns to Use Tools.”) Just as humans learn by testing an object, UMan is able to experiment and learn by playing with objects, including scissors, shears, and wooden toys.

Stomach Explorers
While doctors have used capsule cameras for the past few years to image the insides of patients, they hope for ways to control such a camera so that it pauses at areas of interest. A group in Germany uses a magnetic device outside the body to control the movement of a pill camera (See “Remote Control for Pill Cameras”), while researchers at Carnegie Mellon University created a robot capsule that can anchor on delicate internal tissue without damaging it. (See “Controlling a Gut Bot’s Position.”)

Scientists would also like to give these tiny explorers the abilities to take samples or directly treat areas of interest. Researchers are designing robotic modules that can be swallowed individually but can link together to form a longer, snakelike robot that can then investigate the intestines. A European endeavor called ARES strives to develop a longer, self-assembling robot that can explore and treat areas in the gut. Currently, teams are working on the best way to connect and anchor such a bot. (See “Building a Self-Assembling Stomach-Bot.”)

Surgery Assists
Robotics can make complex surgery easier and less invasive, which can speed up patient recovery time. Robotic arms and microinstruments that a surgeon can control also give rise to the potential of telesurgery. This year, hospitals across the country have reported success with 3-D imaging, robotic arms, and microinstruments in performing a variety of cancer surgeries and procedures such as complex knee surgery. (See “Robotic Guidance for Knee Surgery.”)

Heart surgery normally requires a doctor to crack open a patient’s ribs to reach the heart within. But long snakelike robots could theoretically slide in through a small incision to perform heart surgery. (See “Snakelike Robots for Heart Surgery.”) Another robotic system could allow doctors to operate on a heart while it’s still beating, avoiding the potential for brain damage and lessening recovery time. (See “Operating inside a Beating Heart.”)

0 comments about this story. Start the discussion »

Credit: Dov Katz

Tagged: Computing, Communications, Robotics, robotics, robots, robotic arm, robotic assistant, robotic insect, biomedical robots, surgical robots

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me