Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Smart Screens
Thanks to renewed interest in hands-on computing, researchers have continued to push the boundaries of displays and interfaces. This year, researchers at Microsoft demoed a back-of-the-screen touch pad, and a startup based in New York called Perceptive Pixel came up with an intuitive way of sliding an on-screen object underneath another based on the touch force. (See “What’s Next for Computer Interfaces?”) Touch screens came down in cost, becoming available to the average hacker. Engineers at Nordt, a research studio based in New York, introduced a product called TouchKit, which lets anyone make and modify his or her own touch-screen table for less than $1,000. (See “Open-Source, Multitouch Display.”) And Microsoft researchers demonstrated an easy, cheap way to turn a normal display into a multitouch surface. (See “A Low-Cost Multitouch Screen.”) Taking things one step further, Samsung partnered with software provider Reactrix to entirely remove the need for touch with a gesture-based interface: a screen that incorporates computer vision software to “see” the hand movements of people standing in front of it. (See “A Display That Tracks Your Movements.”)

Storing More for Less
Advances in flash memory continued according to Moore’s Law, which states that the number of transistors on chips doubles roughly every two years. Even so, this year, researchers provided details of up-and-coming memory technologies that could overcome some of the drawbacks of flash: its slowness and the way it starts leaking data after about 10 years. One possible successor, phase-change memory, which stores data by altering the crystal structure of a material (rather than using the charge within transistors), seems likely to enter the market in 2009. Over the past year, companies including Samsung and a Swiss startup called Numonyx have begun sending out test samples to gadget makers. (See “A Memory Breakthrough” and “A New Memory Company.”) The developer of the magnetic spin valve used in hard drives–IBM’s Stu Parkin–introduced a technology called racetrack memory, in which nanowires hold data in the form of magnetic spin. (See “IBM’s Faster, Denser Memory.”) According to Parkin, racetrack memory could match the durability of flash memory, the speed of phase-change memory, and the capacity of spinning magnetic hard disks.

Microprocessor Makeovers
The microchip industry and research community is always hunting for ways to make electronics more energy efficient, and this year, it was prompted to rethink the fundamental design aspect of microprocessors. At the Lawrence Berkeley National Lab, researchers found a way to get more performance out of a supercomputer than ever before (while also slashing power consumption): by borrowing design tricks from the cell-phone industry. (See “A Smarter Supercomputer.”) And a team at the University of Michigan designed a special chip for small sensor applications that consumes only 30 picowatts of power when idle and 2.8 picojoules of energy per computing cycle. The chip is so energy efficient that it can be powered by a battery no larger than itself. (See “A Picowatt Processor.”) Continuing the low-power theme, Intel, for its part, launched Atom, a power-efficient processor designed for small notebooks and handheld gadgets. (See “Inside Intel’s New Chip.”) The chip maker also provided details about Nehalem, its newest multicore chip design with a novel memory structure that lets data flow to the microprocessor more efficiently. (See “Intel’s Power Play.”) Intel could soon face a foreign challenge, however. This year, Chinese researchers released details of their latest multicore chip, Godson-3. (See “A Chinese Challenge to Intel.”)

0 comments about this story. Start the discussion »

Credit: Patrick Baudisch

Tagged: Computing, IBM, Intel, wireless, chips, microprocessor, touch-screen

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me