Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Nuclear fusion could prove an abundant source of clean energy. But the process can be difficult to control, and scientists have yet to demonstrate a fusion plant that produces more energy than it consumes. Now physicists at MIT have addressed one of the many technological challenges involved in harnessing nuclear fusion as a viable energy source. They’ve demonstrated that pulses of radio frequency waves can be used to propel and heat plasma inside a reactor.

MIT’s doughnut-shaped fusion reactor, the Alcator C-Mod, uses magnets to confine hydrogen in a turbulent, electrically charged state of matter called a plasma. By infusing large amounts of energy into the plasma, physicists can kick off fusion reactions that, in turn, release large amounts of energy. The MIT reactor is too small to generate practical fusion reactions that generate enough energy to keep themselves going–what’s called a burning plasma. But the researchers have been working on ways to achieve this state in larger reactors, such as the planned International Thermonuclear Experimental Reactor (ITER).

The challenge is keeping the plasma confined in a stable rotation, with just the right amount of turbulence and the ideal temperature gradients so that it keeps burning. Traditionally, physicists control plasmas by injecting high-power beams of inert atoms. Controlling turbulence and temperature is critical: the better confined the plasma, the smaller the reactor needs to be and the less power required.

When directed well, inert beams in today’s reactors “have substantial momentum and drag the plasma with them,” says Earl Marmar, head of MIT’s Alcator project. They also “heat” the plasma, supplying energy to kick-start fusion reactions. Marmar anticipates that in the future, the beam technique simply won’t work: it will be able to impart enough energy, but not enough momentum.

MIT researchers led by John Rice and Yijun Lin have experimentally demonstrated that radio waves–which will be able to penetrate large plasmas like ITER’s–can give plasma both energy and momentum. The MIT group placed powerful antennas at the edge of the reactor to launch two frequencies of radio waves into the plasma. One group of waves is attuned to protons. When these waves collide with protons, they heat up; the protons, in turn, collide with the hydrogen isotope fuel. The second group of waves is attuned to lightweight helium isotopes that the MIT group adds to the mix. These waves collide with the helium, imparting their momentum to the isotopes, which push the rest of the plasma. These experiments were described last week in the journal Physical Review Letters.

6 comments. Share your thoughts »

Credit: P. Rivenberg/M.P. McNally, MIT

Tagged: Energy, MIT, power, nulcear, fusion, nuclear reactors, nuclear physics, radio waves

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me