Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Described in the journal Nature, the Yale circuit “represents a technical breakthrough,” says Columbia University mechanical-engineering professor James Hone. “It opens up a new way to make opto-mechanical switches that can reroute one optical signal using another.” Hone says that such devices could be the building blocks of optical circuits. Adam Cohen, a professor of chemistry, chemical biology, and physics at Harvard, agrees–as long as making these devices proves compatible with standard semiconductor processing. The traditional approach, which involves converting the optical signal into an electrical one and back again, “slows things down and is more complicated,” Cohen says.

Because the mechanical oscillation of the beam changes the way that light flows through it in a measurable way, the beams could be developed into very sensitive chemical sensors, says Hone. The Yale group has not demonstrated a chemical sensor. In theory, however, arrays of the on-chip silicon oscillators could be decorated with antibodies that bind blood proteins characteristic of diseases such as cancer. If a blood sample placed on the chip contained a small amount of the protein, it would bind to the silicon beam, changing the frequency of its oscillations–and thereby causing a measurable change in the speed of light carried through it. Other nanoscale sensors work on a similar principle, picking up differences in the flow of electrical current through oscillating silicon beams or carbon nanotubes when they bind to molecules of interest. Optical resonators might be even more sensitive, says Hone, because optical devices are “better behaved,” giving clearer signals than electrical devices do.

However, such applications are many years away. The device is still in very early development in Tang’s lab, where his group is refining its mechanical properties.

3 comments. Share your thoughts »

Credit: Hong Tang/Yale University

Tagged: Computing, Materials, nanotechnology, silicon photonics, optical computing, nanostructure, chemical sensor, nanophotonics

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »