Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Entire industries and research fields are devoted to ensuring that, every year, computers continue getting faster. But this trend could begin to slow down as the components used in electronic circuits are shrunk to the size of just a few atoms. Researchers at HP Labs in Palo Alto, CA, are betting that a new fundamental electronic component–the memristor–will keep computer power increasing at this rate for years to come.

Memristors were first predicted in 1971 by Berkeley professor Leon Chua. They are nanoscale devices with unique properties: a variable resistance and the ability to remember the resistance even when the power is off.

After rediscovering Chua’s work, researchers at HP Labs built the first working memristor in May of this year. And last week, at the first ever Memristor and Memristor Systems Symposium, in Berkeley, CA, the same team showed how memristors can be integrated into functioning circuits. Their circuits require fewer transistors, allowing more components (and more computing power) to be packed into the same physical space while also using less power to function.

“We’re trying to give Moore’s Law a boost,” says lead researcher Stan Williams, a senior research fellow at HP, referring to a prediction made by Intel founder Gordon Moore that the number of transistors on a computer circuit (and therefore computer performance) should double roughly every two years.

Increasing performance has usually meant shrinking components so that more can be packed onto a circuit. But instead, Williams’s team removes some transistors and replaces them with a smaller number of memristors. “We’re not trying to crowd more transistors onto a chip or into a particular circuit,” Williams says. “Hybrid memristor-transistor chips really have the promise for delivering a lot more performance.”

A memristor acts a lot like a resistor but with one big difference: it can change resistance depending on the amount and direction of the voltage applied and can remember its resistance even when the voltage is turned off. These unusual properties make them interesting from both a scientific and an engineering point of view. A single memristor can perform the same logic functions as multiple transistors, making them a promising way to increase computer power. Memristors could also prove to be a faster, smaller, more energy-efficient alternative to flash storage.

Although memristor research is still in its infancy, HP Labs is working on a handful of practical memristor projects. And now Williams’s team has demonstrated a working memristor-transistor hybrid chip.

2 comments. Share your thoughts »

Credit: Qiangfei Xia, HP

Tagged: Computing, Communications, chip, HP, Moore's Law, transistor, memristor

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me