Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

The list of genes and proteins associated with cancer and other diseases is growing rapidly: earlier this month, for instance, scientists reported sequencing the whole genome of a cancer cell for the first time. A field called molecular imaging puts this information in context by letting scientists watch biological molecules in action inside diseased cells and tissues. Now researchers have found a way to let molecular imaging that uses near-infrared light peer deeper into the body.

Fluorescent-protein tags can be made to target just about any biological protein, be it an enzyme that helps cancer cells advance through surrounding tissue or a marker of arthritic inflammation. But their use has been limited to shallow tissues in humans or to small animals. The markers are activated by, and emit, near-infrared or infrared light, which scatters in tissue; the more tissue the light has to penetrate, the blurrier the images. A new 3-D near-infrared imaging system uses ultrafast cameras to capture light that hasn’t scattered. It’s been used to create richer, higher-resolution images of the molecular workings of lung cancer in mice, and with further development, it might be used to study disease in thicker tissues and in people. The research was led by Vasilis Ntziachristos, director of the Institute for Biological and Medical Imaging at the Helmholtz Center, in Munich, and Mark Niedre, assistant professor of electrical and computer engineering at Northeastern University, in Boston.

You can see how tissue scatters light by holding a laser pointer to your fingertip, says Niedre: the light spreads out and your finger glows. By the time most of the photons emerge, they “have bounced numerous times in the tissue and contain little image information,” says Changhuei Yang, a professor of electrical engineering and bioengineering at Caltech, who is not involved in the project.

Niedre and Ntziachristos’s imaging technique records photons that have taken a relatively straight path through the body and thus contain better imaging information. But the photons also pass through the tissue much more quickly, which is why previous imaging techniques haven’t been able to exploit them. The Munich and Boston researchers used a combination of an ultrafast light source called a femtosecond laser and an ultrafast camera to capture these so-called early-arriving photons. Light that bounces around inside the tissue before emerging doesn’t get recorded by the new imaging setup. “We’re preferentially choosing photons with more spatial information,” says Niedre. The group also created better models of how these photons travel, which help sharpen the images even further.

Capturing early-arriving photons makes for much better pictures of the biological activity of deeper tissue. In images of mice with lung cancer, Niedre says, “we resolved features that you couldn’t see” with a conventional infrared-imaging setup. Not only were the images sharper, Niedre says, but they also revealed molecular markers of inflammation and other problems throughout the lungs. The slower imaging setup showed only the tumors themselves.

0 comments about this story. Start the discussion »

Credit: National Academy of Sciences

Tagged: Computing, Biomedicine, cancer, imaging, optics, tumor, molecular biology, molecular imaging

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me