Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The promise of medical lasers goes beyond clean incisions and eye surgery: Many believe that lasers should be used not just to create wounds but to mend them too. Abraham Katzir, a physicist at Tel Aviv University, has a system that may just do the trick and is proving successful in its first human trials.

In principle, “laser-bonded” healing offers certain advantages over classic needle-and-thread sutures, including faster healing, decreased risk of infection, and less scarring. Researchers have been working toward flesh-welding lasers for more than a decade, and a number of human trials have shown promise. But what was lacking, until now, was consistency. Flesh, blood vessels, and nerves are delicate tissues that can easily be – for lack of a better word – overcooked.

To overcome this problem, Katzir and his colleagues developed a laser-based system with a feedback loop that prevents overheating. First, they had to determine the optimal temperature at which flesh melts but can still heal (about 65 degrees Celsius). Then the group created a pen-sized tool that incorporates optic fibers: one that channels a carbon dioxide-powered infrared laser to the wound with pinpoint precision, and another that leads from the pen to an infrared sensor, which measures the temperature and ensures that the heat remains within the ideal range, between 60 and 70 degrees. All a surgeon has to do is move the pen’s tip along the cut, strengthening and sealing the weld with a solder of water-soluble protein.

While many scientists have experimented with laser-bonded healing, most have relied on visual feedback to make sure they were not over- or under-heating the wound. Too little heat results in an unclosed wound, while too much heat causes a bond that initially appears strong but that breaks down as the tissue dies off. “Our advantage is that we have developed optical fibers – we’re one of the very, very few groups in the world who have optical fibers that transmit IR radiation,” Katzir says. “We measure the infrared emitted from the spot and can know the temperature exactly.”

Until recently, the researchers worked to perfect their technique on pigs, whose skin is most similar to that of a person. Those studies told them that their method was sound: the laser-healed wounds were just as strong, mended faster, and resulted in less inflammation and infection than normal sutures, since a cut that’s welded closed is better at keeping bacteria out.

Now, the group has finished their first clinical trial on human patients. Ten subjects underwent laparoscopic surgeries for gall bladder removals: each patient had four small incisions, two of which were closed with sutures and two with Katzir’s laser technique.

4 comments. Share your thoughts »

Credit: Abraham Katzir

Tagged: Biomedicine, health, surgery, blood vessels, healing, laser-bonded welding, laser-healing

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me