Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

In another demonstration, the researchers showed that OpenFlow can enable direct manual control of network traffic: using a mouse cursor, researchers rerouted data traffic from Stanford to a network in Japan. “The goal is not to show that you are controlling your network from a mouse, but that you now have control,” McKeown says. “It’s not left up to whatever the box vendor decides … This infrastructure that’s been held close is being opened and democratized.”

OpenFlow is creating an entirely new field of research, with benefits that the average person could enjoy within the next couple of years. “This could take over the Internet,” says Rick McGeer, a researcher at HP Labs who’s working on projects similar to McKeown’s. “This actually looks like an elegant, efficient solution that we can use to take all of these ideas that we’ve been exploring for the past five years and start implementing them, and start putting them in the network.”

There could, however, still be some challenges ahead, McGeer warns. First, he says, vendors would need to continue to support the project as it moves out of the lab and onto the live Internet. Second, companies who provide Internet service need to see the benefits of opening up their networks. “If I had to guess what would happen first,” McGeer says, “Comcast might want to offer multicast trees [a way to distribute the burden of data-intensive Web functions] for efficient YouTube videos, and they’ll start to put that in for their services.”

McKeown sees the potential to completely open up the airwaves, allowing portable devices to access any wireless network that they can detect. In a city, for instance, a Wi-Fi-enabled cell phone can probably recognize dozens of networks, McKeown says–from Wi-Fi access points to the cell networks maintained by different carriers. But if a user needs more bandwidth for a download, or a stronger signal for a clearer call, or if she moves out of range of a wireless transmitter, switching to another network is difficult, if not impossible. “Our goal is seamless mobility,” McKeown says. “We’d love to come up with a way to re-architect cellular wireless networks. But that’s further out. We’re talking 10 years.”

1 comment. Share your thoughts »

Credit: Technology Review

Tagged: Web, Internet, routers, OpenFlow

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me