Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The majority of deaths on the battlefield occur within half an hour after injury–often too quickly for a soldier to get to a medic, let alone a hospital. But a collaboration between researchers at the University of California, San Diego (UCSD), and Clarkson University, in New York, aims to change all that with a chip that could detect injuries and treat them almost instantly.

At the center of the research is a sensor, still in development, that could be used to continuously monitor a soldier’s blood, sweat, or even tears for biomarkers. All of these fluids contain glucose, oxygen, lactase, and the hormone norepinephrine, which fluctuate depending on a person’s health and activity levels. Specific, collective changes in these markers can indicate the presence of an injury. And once the sensor picks that up, it could transmit the information elsewhere on the chip, or to another chip, and trigger release of an appropriate medication. That, at least, is the idea; the reality, however, could take a little while to develop.

The head of the project, Joseph Wang, is a nanoengineering professor at UCSD whose office is packed with electronic sensors of every shape but only two sizes: small and even smaller. Wang, who previously helped develop a noninvasive glucose monitor that samples sweat, is no stranger to continuous sensing. But rather than picking up just one signal, the new sensor will need to differentiate among multiple markers and interpret the results.

To do this, Wang is collaborating with Clarkson’s Evgeny Katz, who recently created a system that uses an enzyme-based logic gate to not only measure a combination of biomarkers but also use the results to make a limited diagnosis. Katz’s system is based on enzyme-driven reactions: in the presence of certain enzymatic products, one set of “gates” is unlocked and triggers a specific chain reaction; other products trigger a completely different set of gates. The end result is a logic chain that has the potential to identify certain medical conditions.

So far, Katz’s enzyme logic diagnostics work only in solution. But Wang and Katz envision a system that would use an electronic sensor, one containing enzymes, to detect the presence or absence of the four biomarkers mentioned above: glucose, oxygen, lactase, and norepinephrine. In different combinations, these biomarkers can indicate different injuries, such as brain trauma or shock. Depending on the injury, the electrodes would translate the enzymatic results into a code that activates signal-dependent membranes to release the appropriate medication. If a soldier were to go into hemorrhagic shock, for example, the electrode would detect rising levels of lactate, glucose, and norepinephrine. As the electrode enzymes’ product mixture begins to change, the reaction would trigger the logic gate unique to shock and, potentially, signal for the release of the appropriate medication. “We want to build a smart, intelligent sensor that can distinguish between different injuries, make the decision to treat, and, once it recognizes the injury, treat appropriately,” Wang says.

1 comment. Share your thoughts »

Credit: UCSD Jacobs School of Engineering

Tagged: Computing, Biomedicine, flexible electronics, sensors, electrodes, biomarkers, soldiers, battlefield technology

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me