Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

“This is the first real step in quantifying how different genomes function to produce us,” says James Sherley, a stem-cell biologist at the Boston Biomedical Research Institute and one of the project’s first 10 volunteers. “The answers to why genome expression is not deterministic, to how environment influences genotypic expression, to how the same genome can produce an eye, a heart, and a brain–all of these mysteries and more [lie] in this rich experimental milieu.”

Church aims to enroll 100,000 volunteers in the next phase of the project, creating a correlated database of genetic, medical, and trait information that can be complemented with cells from the subjects of interest. Scientists around the world could then design their own experiments around the data, using the cells.

The ambitious project is still in its very early stages. So far, Jay Lee, a scientist in Church’s lab, and In Hyun Park, also at Harvard, have derived stem cell lines from two of the volunteers: Church and Rosalynn Gill, a founder and chief science officer at Sciona, a personal-genomics startup in Aurora, CO. Initial studies of the cells have focused on genes involved in inflammation, an immune reaction that plays a role in most human ailments, including stroke, diabetes, autoimmune disease, and aging.

Lee says that the experience of studying his boss’s cells has been unique. “Deriving tissues, such as hair, from someone you know is strange,” says Lee. “It’s a phenomenon never seen before in modern medicine.” He adds that sharing his findings with Church, even though they are preliminary and difficult to interpret, has given him pause.

In addition, because the cells carry the genetic blueprint of their donors, they could be used to determine, and perhaps publish, genetic characteristics that donors and their families may not want to know. Pinker, for example, says that he’s unsure if he wants to know whether he carries a genetic variation that dramatically raises his risk for Alzheimer’s disease.

0 comments about this story. Start the discussion »

Credit: Personal Genome Project

Tagged: Biomedicine, stem cells, sequencing, personal genomics, George Church

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me