Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

The bacteria bots wouldn’t be able to make it in larger blood vessels on their own, however. The current would be too strong for them to swim against. So the researchers envisage using a larger, magnetically steerable microvehicle to carry the bots close to a tumor. “The vehicle will be a type of polymer, or possibly another type of material,” says Martel. “We have a way to release the bacteria while the vehicle stays there and dissolves.”

Martel’s vehicle contains magnetic nanoparticles and can be moved at about 200 microns per second. He says that he and his team correct the microvehicle’s course approximately 30 times a second. While they have developed the microvehicle and bacterial microbots independently, they are now working to combine the two technologies. “We think in two years we’ll be able to do that,” says Martel.

“This work is promising but, as with any transformative idea, there are a lot of challenges that need to be addressed,” says Bahareh Behkam, an assistant professor at Virgina Polytechnic Institute, who has also used bacteria to propel microbeads. She suggests that it could be difficult to maintain normal blood flow and to retrieve the magnetic particles from the body after the procedure is complete.

Some researchers also question whether the body’s immune system would attack the bacteria before they could reach a tumor, but Martel defends the approach. “We are very confident from our preliminary tests that this [scenario] will not be an issue,” he says. Because the immune system has not encountered these bacteria before, he says, it would not have time to wipe out the microbots before they reach their target.

4 comments. Share your thoughts »

Credit: The NanoRobotics Laboratory, École Polytechnique de Montréal (EPM)
Video by The NanoRobotics Laboratory, École Polytechnique de Montréal (EPM)

Tagged: Computing, Biomedicine, nanotechnology, robotics, nanoparticles, bacteria, MRI, tumor, hybrids, magnetic

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me