Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Silicon’s ability to absorb light and produce electric current has made it the material of choice for light sensors and solar cells. Yet about half of the light from the sun–red light and most of the infrared–passes right through silicon.

SiOnyx, a startup based in Beverly, MA, is making a new type of silicon material, dubbed black silicon, which captures nearly all of the sun’s light. “It is basically a sponge for light, both visible and infrared,” says CEO Stephen Saylor. The material uses the light more effectively, generating hundreds of times more current than conventional silicon. The company, which has licensed technology developed at Harvard University, also claims that the material makes it possible to use less silicon for light sensors, making the devices cheaper, smaller, and lighter.

Saylor says that the highly sensitive light detectors made from black silicon would have many advantages. In medical x-ray imaging, he says, “if you have a very high-sensitivity detector, you could lower the radiation dose of x-rays to get that image.” Because the detectors pick up extremely low light signals, they could be used for in vitro imaging, night-vision goggles, and light sensors in digital cameras. Low-light applications currently use more exotic and expensive gallium arsenide.

The material could also be used to make infrared detectors, a new application for silicon. Infrared detectors, used in fiber-optic telecommunications, astronomy, and security systems, are made of gallium arsenide and other materials that are difficult and expensive to process in addition to containing toxic chemicals such as lead and mercury. “Black silicon extends the technology that we know extremely well and makes it usable in a region of spectrum where it wasn’t useful before,” says Eric Mazur, a professor of applied physics at Harvard, who discovered the material in his lab. “I really believe it’s a new class of materials, just as semiconductors were a new class of materials 60 years ago.” Mazur cofounded SiOnyx in 2006 with his then graduate student James Carey, now the company’s chief science officer.

The company makes the material by putting conventional silicon in a chamber full of sulfur hexafluoride gas and bombarding it with short, intense pulses from a femtosecond laser. This roughens the surface by creating millions of tiny cones on it. The rough layer is about 300 nanometers thick and infused with sulfur atoms.

This thin surface layer does all the light capturing. Conventional silicon devices use 0.5-millimeter-thick silicon. Black-silicon devices would use hundreds of times less silicon, which would cut costs, Saylor points out. The thin devices would also be easier to incorporate into an integrated circuit.

4 comments. Share your thoughts »

Credit: SiOnyx

Tagged: Energy, Materials, energy, materials, silicon, solar cells, black silicon

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me