Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Antibodies aren’t just a critical part of the body’s defense against disease: they’re also the gold standard for biosensing. These natural proteins are widely used in diagnostic tests for cancer and other diseases because they recognize and bind so efficiently to disease markers, which include bacterial and viral proteins and protein fragments. However, protein antibodies are expensive to synthesize in the lab and only last a few months. Now biochemists have developed a method to make artificial antibodies that may be just as effective as the real thing.

Researchers have been working on synthetic antibodies for about twenty years. Artificial antibodies, made from polymers rather than proteins, promise to be cheap and long lasting, says Kenneth Shea, a professor of chemistry at the University of California, Irvine, who led development of the new method. However, no one has been able to make artificial antibodies that bind their targets as tightly and as specifically as natural antibodies do.

To make the new and improved artificial antibodies, Shea and his collaborators at the Tokyo Institute of Technology refined a technique called molecular imprinting. This involves taking a target molecule and placing it in a solution containing the building blocks of a polymer antibody. The polymer then grows around its target, conforming to its shape; once it’s done, the target molecule is rinsed away. Then, when the artificial antibody next meets the target molecule, they fit together like a key in a lock. “You can make a mold around almost any molecule,” explains Klaus Mosbach, founder of the Center for Molecular Imprinting at the Center for Chemistry and Chemical Engineering, in Lund, Sweden, who pioneered the technique.

Molecular imprinting is “a beautiful idea and a great technology,” says Vincent Rotello, a professor of chemistry at the University of Massachusetts Amherst. Plastic antibodies have found some industrial applications, mostly for separating small molecules out of solutions. But they have not been suitable for therapeutic, diagnostic, or biosensing applications because none that have been made work as well as natural antibodies in water-based solutions such as blood. And they could not be made to effectively target large molecules such as proteins.

The researchers developed much better plastic antibodies by enhancing the imprinting process in a novel way. Shea and his collaborators started with a target protein, melittin, and screened libraries of polymer building blocks for those that would bind to it most effectively. “Some effort went into determining the composition that would minimize interaction with [nontarget] garden-variety proteins,” says Shea. His artificial antibody has a high affinity for its target protein, comparable in strength to that of a natural antibody, and also works in water solutions. The synthesis is described in a paper in the Journal of the American Chemical Society.

3 comments. Share your thoughts »

Credit: Kenneth Shea

Tagged: Biomedicine, Materials, polymers, protein, medical diagnostics, biosensor, antibody

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »