Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Cobalt Biofuels, a startup based in Mountainview, CA, has developed a cheap way to make butanol from biomass. Last week, the company announced that it had raised $25 million to expand from a small laboratory-scale production to a pilot-scale plant that can produce about 35,000 gallons of fuel per year.

“Our models tell us it is a very low-cost process that can be competitive with anything on the market today,” says Pamela Contag, the company’s founder and CEO. The process is cheaper because it uses improved strains of bacteria to break down and ferment biomass, as well as improved equipment for managing fermentation and reducing water and energy consumption, she says.

Butanol could help increase the use of biofuels, since it doesn’t have the same limitations as ethanol, the primary biofuel made in the United States. It has more energy than ethanol: a gallon of butanol contains about 90 percent as much energy as a gallon of gasoline, while ethanol only has about 70 percent as much. What’s more, while ethanol requires special pipelines for shipping, butanol can be shipped in unmodified gasoline pipelines. And butanol can be blended with gasoline in higher percentages than ethanol without requiring modifications to engines.

Cobalt Biofuels joins a handful of other companies developing biobutanol. The biggest such effort comes in the form of a partnership between DuPont and BP: the companies plan to be selling commercial quantities of butanol made from sugar beets by 2010. Other companies developing biobutanol are Gevo, a startup based in Englewood, CO, that is commercializing advances from UCLA, and Tetravitae, based in Chicago, which is commercializing advances from the University of Illinois. In spite of their progress, Andy Aden, a research scientist at the National Renewable Energy Laboratory, in Golden, CO, says that no company has demonstrated yet that it can make butanol cheap enough to compete in the market.

Cobalt Biofuels uses the bacteria Clostridium to break down components of plant matter, including cellulose, hemicellulose, and starch, and produce a combination of butanol, acetone, and ethanol. That is nothing new: Clostridium naturally produces these chemicals and was employed in the early 1900s to make butanol for use in solvents and to make acetone for explosives and other products. What’s new, Contag says, is that a combination of fuel prices, government biofuel mandates, and the company’s new technology have made butanol competitive as a fuel.

Gain the insight you need on energy at EmTech MIT.

Register today

4 comments. Share your thoughts »

Credit: Technology Review

Tagged: Business, Energy, energy, biofuel, BP, DuPont, butanol, clostridium

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »