Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

After studying the motion of real hearts, the researchers developed a foam model to test whether their device increased the dexterity of a small group of surgeons asked to affix anchors to the foam in particular positions. Howe says that the surgeons’ performance was notably improved when they used the motion-compensation system. “Without it, there was a far higher failure rate, and the forces they applied were much higher as well,” he says. In a clinical setting, applying too much force to the valve could damage heart tissue. Howe says that the system allows surgeons to affix the anchors within one to two millimeters of their intended position, which is fine, given the pliancy of heart tissue.

“It is very promising research,” says Cenk Cavusoglu, an associate professor of electrical engineering and computer science at Case Western Reserve University. Cavusoglu is working on a similar system to allow surgeons to perform coronary-artery bypass surgery. While the procedure itself is quite different, the need for motion compensation is the same. Cavusoglu says that he is impressed by the simple design of the valve-repair tool and by the researchers’ results so far.

Shelten Yuen, a Harvard PhD student who worked on the motion-compensation system, says that preliminary animal trials have already begun. But there is still much work to be done to perfect the tool. “There’s a lot of interest on my part in terms of incorporating additional sensors, such as electrocardiograms and force sensors,” Yuen says.

Romuald Ginhoux, a medical-software systems analyst at Median Technologies, in France, agrees that additional sensors could make the system more accurate. Ginhoux was also impressed by the small size of the device, which is about as big as a soldering iron. Ginhoux says that back in 2003, he worked on similar robots for heart surgeries, but that they were “the size of a real arm.”

Yuen says that he hopes to make the device even smaller and lighter so that it will respond better to slight pressures, giving surgeons a better feel for the heart’s tissue.

Gain the insight you need on robotics at EmTech MIT.

Register today

3 comments. Share your thoughts »

Credit: Shelten Yuen

Tagged: Computing, Biomedicine, software, robotics, ultrasound, surgery, heart pump, heart surgery

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me