Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Fixing the heart is hard. Certain procedures have to be performed on a stationary organ, so the heart is stopped and the patient put on a cardiopulmonary bypass machine. But stopping the heart increases the risk of brain damage. Now researchers at Harvard University and Children’s Hospital Boston are testing a robotic system that could help surgeons perform a common valve repair while the heart beats on. The system uses 3-D ultrasound images to predict and compensate for the motion of the heart so that the surgeon can work on a patient’s mitral valve as it moves.

“Some 50,000 people a year, in the U.S. alone, get mitral-valve surgery,” says Robert Howe, a professor of engineering at Harvard and a researcher on the project. “It is a pressing clinical concern.”

The goal of the procedure is to decrease the size of the valve. Traditionally, this is done by placing a stiff ring around the valve and suturing it in place by hand.

“We know how to repair valves. But what patients and doctors want is a more rapid recovery,” says Marc Gillinov, a cardiac surgeon at the Cleveland Clinic who was not involved in the research. It can take two or three months for a patient to recover from an open-heart procedure; if the heart didn’t have to be stopped, the recovery time could drop significantly. Performing the surgery on a beating heart would also give the surgeon instant feedback on the effectiveness of the procedure. “You’d know just as you do it whether the valve is working well,” Gillinov says.

Howe says that, moreover, a number of studies show that stopping the heart can result in long-term cognitive deficits, and that older or frail people in particular don’t always respond well to bypass machines. He hopes that his system will make heart surgery safer.

Unlike traditional mitral-valve repair, Howe’s procedure does not involve opening up the heart itself. Instead, a hollow needle is inserted into the organ. The needle is used to introduce small anchors into the heart and affix them to the tissue around the mitral valve. The anchors can then be pulled together by a suture wire to decrease the size of the valve opening. “The challenge here is that [to affix the anchors] we need to keep track of where the heart tissue is, as the heart moves continuously,” Howe says. Howe’s team opted to use 3-D ultrasound to visualize heart movement because with other imaging techniques, such as video, the internal structures of the organ would have been concealed by circulating blood.

Data from the 3-D ultrasound images is analyzed using special software written by the researchers. The software can predict where heart tissue will be approximately 70 to 100 milliseconds in the future, so the position of the tip of the handheld surgical tool can be adjusted accordingly. Sensors in the tool also detect whether it comes in contact with the tissue. “We can detect very quickly if things deviate greatly from what’s predicted and then pull back the [instrument] to get it out of the way,” Howe says.

3 comments. Share your thoughts »

Credit: Shelten Yuen

Tagged: Computing, Biomedicine, Robotics, software, robotics, ultrasound, surgery, heart pump, heart surgery

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me