Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Researchers at GE have come up with a way to treat metals so that they repel water. The extreme water-repelling property, called superhydrophobicity, means that water forms drops on the surface instead of spreading and sticking to it.

The advance builds on previous work that came out of GE’s Global Research Center, in Niskayuna, NY. Two years ago, researchers showed that they could make Lexan–a widely employed plastic that’s used to create CDs, iPods, aircraft windscreens, and car headlamps–water-repellant. They did this by chemically treating the surface to make it rough. The researchers have now demonstrated the same effect on metal surfaces.

Many other superhydrophobic materials have been demonstrated, but most have used some kind of plastic. Superhydrophobic metals open up many new applications, says Jeffrey Youngblood, a professor of materials engineering at Purdue University. “Metallic structures are more robust and can survive in harsher environments, allowing for their use in applications where plastic is infeasible, [such as in] planes, trains, automobiles, heavy machinery, and engines,” Youngblood says.

GE has some ideas about how to use the materials. One possibility is in de-icing aircrafts. Ice buildup on engines due to condensation can be catastrophic. Right now, aircraft use heat to prevent ice, which requires power. De-icing on the ground, meanwhile, is done with de-icing fluids, which contain toxic chemicals; spraying aircraft with de-icing fluids on the ground also takes a lot of time. “It would be very desirable if we could … just be able to have a material on which ice didn’t stick,” says Margaret Blohm, advanced technology leader for the nanotechnology program at GE’s Global Research Center.

Another application for the metals could be in gas and steam turbines. The superhydrophobic metals could reduce the buildup of moisture and contaminants on the turbines, increasing their efficiency and requiring fewer shutdowns for maintenance.

GE researchers have not published their work, and they declined to divulge much about their research achievements. But they do say that their inspiration comes from lotus-plant leaves, which have a nanocrystalline wax structure. On the leaf’s surface are tiny wax crystals tens of nanometers wide, which hold water drops as almost perfectly spherical beads.

Blohm says that the team is toying with two different approaches to making the metals. One is to texture the metal surface and then put a water-repelling chemical coating on it. The other approach is to leave the metal surface untouched and texture the coating itself. The technique is very general and should work with metals currently used for engines and turbines, such as titanium alloys.

11 comments. Share your thoughts »

Credit: GE Global Research Center

Tagged: Energy, Materials, GE, superhydrophobic, metals, water repellent

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me