Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

For years, materials scientists have been trying to catch up with geckos. Adhesives that, like gecko feet, are dry, powerful, reusable, and self-cleaning could help robots climb walls or hold together electrical components, even in the harsh conditions of outer space. But it’s been difficult to design strong adhesives that can be lifted back up again. Now researchers have developed an adhesive made of carbon nanotubes whose structure closely mimics that of gecko feet. It’s 10 times more adhesive than the lizards’ feet and, like the natural adhesive, easy to lift back up. And it works on a variety of surfaces, including glass and sandpaper.

Developed by a group led by Liming Dai, a professor of materials engineering at the University of Dayton, and Zhong Wang, director of the Center for Nanostructure Characterization at Georgia Tech, the adhesive is not the first made from carbon nanotubes. However, it’s much stronger than previous nanotube adhesives. Its branched structure more closely mimics the structures on gecko feet, which are covered with millions of microscale hairs that branch into many smaller hairs, each of which has a weak electrical interaction with a surface. These many weak interactions add up to strong adhesion over the area of the foot. Previously, researchers have shown that arrays of vertically aligned carbon nanotubes have similar interactions with a surface.

“People have tried to mimic the gecko structures, but it’s not easy,” says Dai. Using a silicon substrate, he and his group grew arrays of vertically aligned carbon nanotubes topped with an unaligned layer of nanotubes, like rows of trees with branching tops. The adhesive force of these nanotube arrays is about 100 newtons per square centimeter–enough for a four-by-four-millimeter square of the material to hold up a 1,480-gram textbook. And its adhesive properties were the same when tested on very different surfaces, including glass plates, polymer films, and rough sandpaper.

One advantage of this adhesive over others is that its strength is strongly direction dependent. When it’s pulled in a direction parallel to its surface, it’s very strong. That’s because the branched nanotubes become aligned, says Dai. But when it’s pulled up with little force, as one would peel a piece of Scotch tape, the nanotubes lose contact one by one.

4 comments. Share your thoughts »

Credit: Science/AAAS

Tagged: Communications, Materials, carbon nanotubes, sticky materials, adhesive, gecko

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me