Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Solyndra, a startup based in Fremont, CA, has developed a novel type of solar panel that’s cheaper to install and produces more power than conventional panels.

Unlike conventional solar panels, which are made of flat solar cells, the new panels comprise rows of cylindrical solar cells made of a thin film of semiconductor material. The material is made of copper, indium, gallium, and selenium. To make the cells, the company deposits the semiconductor material on a glass tube. That’s then encapsulated within another glass tube with electrical connections that resemble those on fluorescent lightbulbs. The new shape allows the system to absorb more light over the course of a day than conventional solar panels do, and therefore generate more power. What’s more, arrays of these tubes offer less wind resistance than conventional flat solar panels, which makes them easier and cheaper to mount on roofs, the company says.

Chris Gronet, Solyndra’s CEO, says that these advantages ultimately reduce the cost of generating solar power, although he won’t say by how much. The company has raised $600 million in venture funding and has orders for $1.2 billion worth of solar panels, which it sells through installers exclusively for commercial rooftops. It started shipping its products earlier this year and is now ramping up production at its factory, which will eventually produce enough solar panels every year to generate 110 megawatts of electricity. The company soon plans to start construction on a 420-megawatt-capacity factory.

Solyndra is one of several companies that have recently received hundreds of millions of dollars to develop thin-film solar cells. Miguel Contreras, a senior scientist at the National Renewable Energy Laboratory, in Golden, CO, which developed the semiconductor deposition method used by Solyndra, notes that several other companies have developed solar cells based on thin films using the same combination of semiconductors; these thin films are making possible a range of new forms for solar cells, including flexible solar cells and solar roofing materials. “There’s a lot more flexibility with thin films than there is with [conventional silicon] wafer technologies,” Contreras says.

The cylindrical solar-cell design has a number of advantages for generating solar power on the flat rooftops of big-box stores, warehouses, and other commercial buildings. Ordinary flat solar panels can catch the wind, so they must be bolted or weighed down with ballast. Solyndra’s panels consist of rows of cylindrical tubes with spaces between them that allow the wind to pass through, decreasing wind loads and making it unnecessary to bolt or weigh down the panels, even with winds up to 130 miles per hour, the company says.

Gain the insight you need on energy at EmTech MIT.

Register today

13 comments. Share your thoughts »

Credits: Solyndra

Tagged: Energy, energy, solar cells, photovoltaics, Solyndra, solar arrays, thin films

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me