Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

There’s no shortage of demand for faster wireless, but today’s fastest technologies–Wi-Fi, 3G cellular networks, and even the upcoming WiMax–max out at tens or hundreds of megabits per second. So far, no commercial wireless system can beat the raw speed of optical fiber, which can carry tens of gigabits per second.

One way to achieve faster speeds is to harness the millimeter-wavelength frequency of the wireless spectrum, although this usually requires expensive and very complex equipment. Now, engineers at Battelle, a research and development firm based in Columbus, OH, have come up with a simpler way to send data through the air with millimeter-wave technology. Earlier this year, in field tests of a prototype point-to-point system, the team was able to send a 10.6-gigabit-per-second signal between antennas 800 meters apart. And more recently, the researchers demonstrated a 20-gigabit-per-second signal in the lab.

Richard Ridgway, a senior researcher at Battelle, says that the technique could be used to send huge files across college campuses, to quickly set up emergency networks in a disaster, and even to stream uncompressed high-definition video from a computer or set-top box to a display.

Whereas Wi-Fi and cellular networks operate on frequencies of 2.4 to 5.0 gigahertz, millimeter-wave technology exploits a region from about 60 to 100 gigahertz. These waves can carry more data because they oscillate faster. Much of the millimeter region is unlicensed and open for use; it has only been neglected because of the difficulty and expense involved in generating a millimeter-wave signal, encoding information on it, and then decoding at the other end. Usually, data is encoded by first generating a low-frequency wave of around 10 gigahertz, then converting it into a higher-frequency signal. The drawback is that encoding data on a 10-gigahertz signal limits the data rate to about one gigabit per second.

The Battelle team was able to better this by more than a factor of 10 using off-the-shelf optical telecommunication components. The researchers modulated data on two low-frequency laser beams, then combined the two. When these two beams combine, they create a pattern of interference that acts as a 100-gigahertz signal. “It looks as though we have a laser beam that has a 100-gigahertz frequency,” Ridgway says.

8 comments. Share your thoughts »

Credit: Battelle

Tagged: Communications, wireless, networks, communications, high definition

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me