Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Lenses made of liquid have interested researchers and engineers for decades because of the technology’s ability to quickly change shape and focal length. But traditional approaches, which use an electric current to change the surface shape of a liquid, require a lot of power. Now, researchers at Rensselaer Polytechnic Institute, in Troy, NY, are proposing a type of liquid lens–made of only two drops of water–that changes shape when bombarded with sound waves. Using sound requires much less power than previous methods and could, with improvements in resolution, make the lens attractive for use in small surveillance cameras and cell phones.

With glass, plastic, and other hard materials, it’s impossible to quickly change the shape of the lens, and therefore to focus: to adjust the focal length, you need to physically move the lens. Extremely small cameras and many cell phones simply don’t have enough room to allow users to move a rigid lens the distance required for a range of focal lengths. An adaptive liquid lens, however, enables small cameras to focus without needing any extra room. “Liquids are a favorite material to work with when you want to change the shape of a lens,” says Amir Hirsa, a professor of mechanical and aerospace engineering at Rensselaer and lead researcher on the project.

The researchers’ lens system, described in October’s Nature Photonics, is composed of a Teflon cylinder less than two millimeters in diameter. The cylinder is overfilled with water so that droplets bulge out on either side. A speaker is hooked up to one side of the cylinder, which is in a pressure-sensitive chamber. The researchers pumped sound at between 50 and 160 hertz into the chamber, changing the shape of the droplet’s surface.

Two companies, Philips and Varioptic, which is based in France, have developed products that use an alternative liquid-lens system. Both use two different liquids that are in contact with each other, which creates an imaging lens at the interface. In a process called electrowetting, the shape of the interface is altered when an electric current is applied to it, changing the surface tension of both liquids.

The advantage of his new approach, says Hirsa, is that it requires much less power. He says that electrowetting requires an electric potential of tens to one hundred volts is required to adjust the conventional liquid lens. In contrast, only a small potential of a couple of millivolts is required to drive his two-droplet design.

8 comments. Share your thoughts »

Credits: Amir Hirsa

Tagged: Computing, cell phones, camera, liquid lens, adaptive optics, cell phone camera

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me