Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Doctors have long sought better ways to examine the workings of the human body without having to cut their patients open. A swallowable camera, little bigger than a normal pill, can already snap pictures as it floats through the stomach and intestine, offering a less invasive way to perform diagnosis than an endoscope or surgery. Now a consortium of European researchers is testing a way to connect several swallowable devices to create a surgical “robot” that would self-assemble inside the stomach.

The Israeli company that developed the first pill cameras, Given Imaging, is currently working on a way to control the movement of its camera capsule from outside the body. Several academic research groups are also looking at ways to let swallowable capsules maneuver themselves by rolling, crawling, or sticking to tissue. With greater control, doctors should be able to better diagnose and possibly even treat illness. But the capabilities of such intestinal devices will still be limited because a capsule must remain small enough to be comfortably swallowed.

A collaboration of researchers from Italy, France, Switzerland, and Spain, called ARES, is testing a way for multiple capsules to automatically snap together. Each would be swallowed individually before assembling into a more complex device once safely in the stomach.

The ultimate goal is for each capsule to perform a different task: one for imaging, one for power, one to take samples, and so on. Once inside the stomach, the capsules would link together, creating a snake-like device that could slide through the intestines, performing more-complex tasks than those performed by a single capsule or several free-floating ones.

“Instead of having a single capsule, we propose a modular approach where each of the capsules could have different functionalities,” says Zoltán Nagy, a researcher at the Swiss Federal Institute of Technology (ETH), in Zurich, and a member of the ARES project. “Before we can actually talk about such complex robots inside the stomach, we need to solve the fundamental problem of self-assembly. Our work suggests one [way that] this can be done robustly,” says Nagy.

The ETH group decided to use magnets to connect its modules, since they don’t require onboard power and can be easily monitored from outside the body.

To find the best design for the self-assembling capsules, the researchers tested different designs in a plastic model of the stomach filled with liquid. They ran around 50 tests for each of 12 different configurations of module size, magnet type, and magnet arrangement. A single magnet with its positive-negative axis on the surface of a longer capsule worked best, yielding a 75 percent rate of success at linking the two capsules; modifying the magnet module to make it more flexible increased this to 90 percent. The group will present details of the linking modules this week at the International Conference on Intelligent Robots and Systems in France.

“[The] work is interesting as a concept since modular robots assembling inside the body could enable more flexible and complex gastrointestinal-related robotic applications,” says Metin Sitti, a scientist who works on gripping robotic capsules at Carnegie Mellon University. “Current capsules typically get bigger by adding more functionalities … Assembling modules would have [fewer] such issues.”

0 comments about this story. Start the discussion »

Credits: ETH Zurich

Tagged: Computing, Robotics, robotics, robots, magnets, self-assembly, surgical robots

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me