Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Catching an oil leak in its earliest stages is critical for directing appropriate cleanup efforts, says Van der Meer. A spill may not leave a visible trace, in the form of tar, until long after its most toxic effects have come and gone. By allowing for quick and easy detection of spills very soon after they occur, biosensor bacteria may make possible an earlier, more effective intervention.

Chemical testing will still likely be necessary, however. The bacterial sensors can give a rough estimate of the relative amounts of each chemical class, but only rigorous chemical analysis can determine exactly how much of each substance is present. “We tried to develop this method to be relatively quick, and to give you an overview,” says Van der Meer, adding that biosensors could perhaps identify areas where more-extensive testing is warranted.

Van der Meer ultimately hopes to incorporate the glowing bacteria into buoy-based devices, which would continuously monitor seawater for hints of an oil spill and relay pertinent information back to a laboratory. His group is developing microfluidic systems that could maintain a constant, contained population of sensor bacteria to periodically test the waters.

Such a device would be subject to the vagaries of living organisms: its usefulness would be entirely dependent on whether the bacteria were alive and thriving. A negative reading could mean that no toxins are present, but it could also mean that the bacteria have died. “If they’re not healthy,” says Richardson, “the system is broken.” Deploying living sensors also raises the risk of releasing genetically altered organisms into the environment. In this case, the chemical-sensing bacteria are theoretically harmless and unlikely to survive long in the harsh open environment.

Beyond detecting oil spills, Van der Meer’s group has developed and tested a bacterial strain that detects arsenic in rice. Other potential applications include testing for pollutants in soil and groundwater, and for antibiotics in meat and milk. But for now, his vision for the future of biosensor bacteria remains largely aquatic.

“Why not have a robotic fish that swims through the water,” he speculates, “and if it detects something, it could send out a signal by GPS? Technically, I think these things are possible.”

2 comments. Share your thoughts »

Credit: Olivier Binggeli and Robin Tecon, University of Lausanne

Tagged: Energy, sensor, bacteria, oil spills

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me