Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

New genetically modified bacteria could slash the costs of producing ethanol from cellulosic biomass, such as corn cobs and leaves, switchgrass, and paper pulp. The microbes produce ethanol at higher temperatures than are possible using yeast, which is currently employed to ferment sugar into the biofuel. The higher temperature more than halves the quantity of the costly enzymes needed to split cellulose into the sugars that the microbes can ferment. What’s more, while yeast can only ferment glucose, “this microorganism is good at using all the different sugars in biomass and can use them simultaneously and rapidly,” says Lee Lynd, an engineering professor at Dartmouth College, who led the microbe’s development.

Most of the ethanol produced in the United States is made from corn. But making the biofuel from corn takes a lot of energy and competes with agricultural uses of the crop. Making fuel from cellulosic plant matter has the potential to be much more sustainable. However, cellulosic-ethanol production is still too expensive to be commercially competitive with corn ethanol.

Turning cellulose into ethanol involves two steps: using enzymes to break complex cellulose into simple sugars such as glucose, and then using yeast to ferment the sugar into ethanol. Both steps add to the price of ethanol. Enzymes can add about 50 cents to a gallon of ethanol. And the second step is relatively expensive because conventional yeast ferments only glucose, although biomass contains five different sugars, linked to form cellulose and hemicellulose in plant cell walls. (Cellulose is a long chain of glucose molecules, while hemicellulose contains all five sugars.) “You really need to be able to convert [all] these sugars into ethanol in order to make it economical, to get a good enough yield,” says Bruce Dien, a biochemical engineer doing ethanol research at the USDA’s Agricultural Research Service.

Lynd wants to create microbes that would do it all: efficiently break down the cellulose and hemicellulose, and then ferment all the resulting sugars. Lynd, a cofounder of Mascoma, is working with colleagues at the startup, based in Cambridge, MA, to develop a simple one-step process for making cellulosic ethanol. In the combined process, a mixture of biomass and the microbes would go into a tank, and ethanol would come out.

The new microbe, presented in this week’s PNAS, is a crucial step toward such a combined process. The bacteria can break down hemicellulose into its five constituent sugars, which they ferment efficiently. To increase the bacteria’s ethanol yield, Lynd and his colleagues knocked out the gene that results in organic acid formation.

17 comments. Share your thoughts »

Credit: Mascoma

Tagged: Energy, energy, biofuel, bacteria, biomass, cellulosic ethanol

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me