Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

Around the time that the swimwear company Speedo was calling on NASA scientists to help create the now famous LZR Racer suit–an enhanced skin that many people credit for more than a dozen world records broken by swimmers so far this week in Beijing–a scientist in New York began working on a different tool for the swimmer’s armory. Over the past five years, Tim Wei, a mechanical and aerospace engineer at Rensselaer Polytechnic Institute, has revamped an established technique in fluid dynamics to study human movement for the first time. The method allows scientists and coaches to study how fast and hard a swimmer pushes the water as she moves through it. Swim coach Sean Hutchison, who put two athletes on the Olympic swim team, says that he used Wei’s insights as the basis for every technical change he made with swimmers leading up to the Olympic trials and games this year.

Wei uses a tracking technique called digital particle image velocimetry, commonly used to measure the flow of small particles around an airplane or small fish or crustaceans in water. For water-based flow experiments, researchers pour minute silver-coated beads into water and illuminate them with a laser. A high-speed digital video camera tracks the downstream flow of beads over the creature. “But ramping up to large scales is hard,” says biologist Frank Fish, who studies the propulsion of aquatic mammals at West Chester University and has collaborated with Wei on dolphin studies. “Shining lasers on swimmers and immersing them in water full of glass beads may be asking them to go above and beyond in the name of science.”

Wei devised a novel solution: instead of glass beads, he filtered compressed air in a scuba tank through a porous hose to create bubbles about a tenth of a millimeter in diameter. An athlete swims through a sheet of bubbles that rises from the pool floor, and a camera captures their flow around the swimmer’s body. Images show the direction and speed of the bubbles, which Wei then translates into the swimmer’s thrust using software that he wrote. “More force equals faster swimming,” he says.

In collaboration with Hutchison, who coaches elite athletes outside Seattle, Wei filmed Olympic gold medalist Megan Jendrick and more junior swimmer Ariana Kukors in a flume swimming breaststroke, which has a froglike kick. Jendrick’s velocity vectors signaled a fast speed, and they pointed straight out from the bottom of her feet. This meant that her feet threw water behind her, thrusting her forward, much the way that an ice skater who throws a ball will shoot herself in the opposite direction. By comparison, Kukors, a less experienced elite swimmer, had slower vectors that ran parallel to her feet, which meant that she slid through the water.

4 comments. Share your thoughts »

Credit: Rensselaer Polytechnic Institute

Tagged: Computing, Olympics, fluid dynamics, sports technology

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me