Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Another potential advantage of the printing method is that the nanowires could be printed not only onto silicon, but also onto paper or plastics, says Javey. He foresees such applications as “sensor tapes”–long roles of printed sensors used to test air quality or detect minute concentrations of chemicals. “Our next challenge is to develop a wireless component” that would relay the signals from the circuit to a central processing unit, he says.

But for now, the researchers have demonstrated the technique as a way to create an image sensor. They patterned the nanowires onto the substrate to make a 13-by-20 array of circuits, in which each circuit acts as a single pixel. The cadmium selenide nanowires convert incoming photons into electrons, and two different layers of germanium-silicon nanowire transistors amplify the resulting electrical signal by up to five orders of magnitude. “This demonstrates an outstanding application of nanowires in integrated electronics,” says Zhong Lin Wang, director of the Center for Nanostructure Characterization at Georgia Tech.

After putting the device under a halogen light and measuring the output current from each circuit, the group found that about 80 percent of the circuits successfully registered the intensity of the light shining on them. Javey attributes the failure of the other 20 percent to such fabrication defects as shorted electrodes and misprints that resulted in poor nanowire alignment. He notes that all of these issues can be resolved with refined manufacturing methods.

The researchers also plan to work toward shrinking the circuit to improve resolution and sensitivity. Eventually, says Javey, they want everything on the circuit to be printable, including the electrodes and contacts, which could help further reduce costs.

0 comments about this story. Start the discussion »

Credit: Ali Javey

Tagged: Computing, Materials, transistor, nanowire circuit, image sensor

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me