Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

In an important step toward the development of practical invisibility cloaks, researchers have engineered two new materials that bend light in entirely new ways. These materials are the first that work in the optical band of the spectrum, which encompasses visible and infrared light; existing cloaking materials only work with microwaves. Such cloaks, long depicted in science fiction, would allow objects, from warplanes to people, to hide in plain sight.

Both materials, described separately in the journals Science and Nature this week, exhibit a property called negative refraction that no natural material possesses. As light passes through the materials, it bends backward. One material works with visible light; the other has been demonstrated with near-infrared light.

The materials, created in the lab of University of California, Berkeley, engineer Xiang Zhang, could show the way toward invisibility cloaks that shield objects from visible light. But Steven Cummer, a Duke University engineer involved in the development of the microwave cloak, cautions that there is a long way to go before the new materials can be used for cloaking. Cloaking materials must guide light in a very precisely controlled way so that it flows around an object, re-forming on the other side with no distortion. The Berkeley materials can bend light in the fundamental way necessary for cloaking, but they will require further engineering to manipulate light so that it is carefully directed.

One of the new Berkeley materials is made up of alternating layers of metal and an insulating material, both of which are punched with a grid of square holes. The total thickness of the device is about 800 nanometers; the holes are even smaller. “These stacked layers form electrical-current loops that respond to the magnetic field of light,” enabling its unique bending properties, says Jason Valentine, a graduate student in Zhang’s lab. Naturally occurring materials, by contrast, don’t interact with the magnetic component of electromagnetic waves. By changing the size of the holes, the researchers can tune the material to different frequencies of light. So far, they’ve demonstrated negative refraction of near-infrared light using a prism made from the material.

Researchers have been trying to create such materials for nearly 10 years, ever since it occurred to them that negative refraction might actually be possible. Other researchers have only been able to make single layers that are too thin–and much too inefficient–for device applications. The Berkeley material is about 10 times thicker than previous designs, which helps increase how much light it transmits while also making it robust enough to be the basis for real devices. “This is getting close to actual nanoscale devices,” Cummer says of the Berkeley prism.

5 comments. Share your thoughts »

Credit: Jason Valentine et al.

Tagged: Computing, Business, microscopy, metamaterials, cloaking, optical communications

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me