Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

But chip-cooling devices will take a while to arrive. It now takes 120 volts to get the polymer to change its atomic arrangement, and that figure would need to be much lower if the material is to be used in laptops. “Ideally, you want it to work at voltages common within the realm of a notebook, in the tens of volts or less,” Mongia says. The researchers will also need to engineer a working device containing the thin films.

Electrocaloric materials could make fridges greener. Current household fridges use a vapor-compression cycle, in which a refrigerant is converted back and forth between liquid and vapor to absorb heat from the insulated compartment. The need for mechanical compression lowers the fridge’s efficiency. “Vapor-cooled fridges are 30 to 40 percent efficient,” Mathur says. But because electrocaloric materials have no moving parts, they could lead to cooling devices that are more energy efficient than current fridges. What’s more, current hydrofluorocarbon refrigerants contribute to global warming.

Refrigerators that use electrocaloric materials would have an advantage over the magnetic cooling systems that some companies and research groups are developing. Electric fields large enough to produce substantial temperature changes in electrocaloric materials are much easier and cheaper to produce than the magnetic fields used in experimental refrigeration systems, which require large superconducting magnets or expensive permanent magnets. However, refrigerators need temperature spans of 40 °C, which is a tall order for electrocaloric materials right now, Mathur says. “The main sticking point in terms of the technology is that we have thin films, and you can’t cool very much with a thin film.”

Zhang and his colleagues are now trying to design better electrocaloric polymers. They plan to study polymers made from liquid crystals, which are used in flat-panel displays. Liquid crystals contain rod-shaped molecules that will align with an electric field and revert to their original arrangement when the field is removed. Zhang says that this property could be exploited to make materials that absorb and release large amounts of heat in response to electric fields.


Gain the insight you need on energy at EmTech MIT.

Register today

14 comments. Share your thoughts »

Credit: Qiming Zhang, Penn State

Tagged: Computing, Materials, energy, polymers, electric fields

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me