Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

A new method for examining fingerprints provides detailed maps of their chemical composition while creating traditional images of their structural features. Instead of taking samples back to the lab, law-enforcement agents could use the technique, a variation on mass spectrometry, to reveal traces of cocaine, other drugs, and explosives on the scene.

Fingerprints are traditionally imaged after coating crime-scene surfaces with chemicals that make them visible. These techniques can be destructive, and different methods must be used, depending on the surface under study, says John Morgan, deputy director of science and technology at the National Institute of Justice, the research branch of the U.S. Department of Justice. “Mass-spectrometric imaging could be a useful tool to image prints nondestructively on a wide variety of surfaces,” says Morgan.

Traditional mass spectrometry, the gold standard for identifying chemicals in the lab that uses mass and charge measurements to parse out the chemical components of a sample, typically involves intensive sample preparation. It must be done in a vacuum, and the sample is destroyed during the process, making further examination impossible and eliminating information about the spatial location of different molecules in the sample that are needed to create an image.

R. Graham Cooks, a professor of analytical chemistry at Purdue University, who led the fingerprint research, and his group used a sample-collection technique that he developed in 2004 and that can be used with any commercial mass spectrometer. Desorption spray ionization uses a stream of electrically charged solvent, usually water, to dissolve chemicals in a fingerprint or any other sample on a hard surface. “The compounds dissolve, secondary droplets splash up and are then sucked into the mass spectrometer,” explains Cooks. As the instrument scans over a surface, it collects thousands of data points about the chemical composition, each of which serves as a pixel. The mass-spectrometry method can create images of the characteristic ridges of fingerprints that also serve as maps of their chemical composition.

In a paper published in the journal Science this week, the Purdue researchers describe using the method to image clean fingerprints and prints made after subjects dipped their fingers in cocaine, the explosive RDX, ink, and two components of marijuana. “We know in the old-fashioned way who it was” by providing information about the fingers’ ridges and whorls, says Cooks of the fingerprint-imaging technique. The technique could also address the problem of overlapping fingerprints, which can be difficult to tell apart: fingerprints made by different individuals should have a different chemical composition. And “you also get information about what the person has been dealing with in terms of chemicals,” says Nicholas Winograd, a chemist at Pennsylvania State University, who was not involved in the research.

0 comments about this story. Start the discussion »

Credit: Science/AAAS

Tagged: Communications, imaging, mass spectrometry, criminal investigation, fingerprints

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me
×

A Place of Inspiration

Understand the technologies that are changing business and driving the new global economy.

September 23-25, 2014
Register »