Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Nanoparticles shaped to resemble certain bacteria can more easily infiltrate human cells, according to a new study. The results suggest that altering the shape of nanoparticles can make them more effective at treating disease.

Joseph DeSimone, a professor of chemistry and chemical engineering at the University of North Carolina at Chapel Hill and at North Carolina State University, tested how nano- and microparticles shaped like cubes, squat cylinders, and long rods were taken up into human cells in culture. He found that long, rod-shaped particles slipped into cells at four times the rate of short, cylindrical shapes with similar volumes. DeSimone, who reported the findings this week in the Proceedings of the National Academy of Sciences, notes that the faster nanoparticles resemble certain types of bacteria that are good at infecting cells. “A lot of rodlike bacteria get into cells quickly,” he says. “Using the same size and shape, our particles get in very quickly too.”

Researchers have long suspected that mimicking the distinctive shapes of bacteria, fungi, blood cells–even pollen–could improve the ability of nanoparticles to deliver drugs to diseased cells in the body. But it has been difficult to test this suspicion. What’s needed is a way to quickly make billions of particles of identical size, chemistry, and shape, and then systematically vary these parameters to learn what effect they have.

DeSimone developed a way to easily design and test a wide variety of particle shapes, while at the same time controlling for size and chemical composition. For example, he can make particles of various shapes–boomerangs, donuts, hex nuts, cylinders, cubes–while keeping the size constant. He can also make boomerang-shaped particles of various sizes, or keep size and shape constant and vary only the chemical composition of the particles. The process gives researchers an unprecedented level of control, he says, which makes it easy to quickly test how changing various parameters of the nanoparticles, including shape, affect how they behave in tissues.

“Historically, most of the work with particles has been with spherical particles because making particles of different shapes has been very challenging,” says Samir Mitragotri, a professor of chemical engineering at the University of California, Santa Barbara. DeSimone “demonstrates a very powerful technology that shows [that] particles of different shapes and materials can be prepared,” Mitragotri says. “It goes well beyond current tools.” He adds that the paper shows that “shape makes a big difference in biological response.”

1 comment. Share your thoughts »

Credit: Joseph DeSimone

Tagged: Biomedicine, Materials, cancer, nanotechnology, drug delivery, nanomedicine

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me