Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

A new way to compress light, designed by researchers at the University of California, Berkeley, could make optical communications on computer chips more practical. The researchers developed computer simulations that suggest that it is possible to confine infrared light to a space 10 nanometers wide. What’s more, unlike other techniques for compressing light, the configuration will allow light to travel up to 150 microns without losing its energy, which is key for small optical systems.

Scaling down optical devices is important for future optical communications and computing. Light-based communications use wavelengths on the order of microns to carry information, and they are successful in large-scale applications such as optical fiber networks that span oceans. But to transmit data over short distances, like between circuit components on a microchip, long-wavelength light must be squeezed into tiny spaces.

Previously, scientists have effectively shrunk light by converting it into waves that travel along the surface of metals. But these waves lose their energy before they can successfully carry information useful distances. Optical fiber, on the other hand, carries light over several kilometers without energy loss, but it cannot be miniaturized less than half the size of the wavelength.

The Berkeley researchers combined these techniques to both compress the light and allow it to travel far enough to transmit information on computer chips. They place a semiconductor nanowire, such as gallium arsenide, within nanometers of a thin sheet of silver. Without the nanowire, light converted into surface waves would spread out over the silver sheet, and the light energy would be quickly dissipated. But with the nanowire present, charges pile up on both the silver and the nanowire surfaces, trapping light energy between them. The nanowire has the effect of confining and guiding surface waves, preventing them from spreading out over the metal and dissipating the light energy.

Using computer simulations to tune both the diameter of the nanowire and the distance between the nanowire and the metal, the researchers found an optimal arrangement that would allow light to be squeezed into the smallest space possible while still retaining a sufficient amount of energy: a nanowire with a 200-nanometer diameter placed 10 nanometers above the silver surface would give the best combination of results for communications wavelengths of about 1.5 microns.

2 comments. Share your thoughts »

Credits: Rupert Oulton, UC Berkeley

Tagged: Computing, Communications, optical computing, nanophotonics, optical networks, optical communications, waveguide, optical circuit

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me