Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

The marmoset brain, shown above, is about the size of a plum. By scanning a dissected brain for 24 hours, scientists were able to generate a map with a spatial resolution of 400 microns. “The image quality and resolution are much higher than we can obtain in a living subject,” says Wedeen.

As the brain rotates, you can see that all the neural fibers are visualized in half of the brain: the spiky fibers that look like pins in a pincushion are part of the cerebral cortex. The sparser half of the image displays only the fibers originating in the opposite side.

It’s easy to see that this brain lacks the folding that is characteristic of the human brain. “The human brain would look 25 times as complicated,” says Wedeen. “Every gyrus [fold] has its own story to tell.”

Credit: George Day, Van Wedeen, Ruopeng Wang at MGH, and John Kaas at Vanderbilt

1 comment. Share your thoughts »

Credit: George Day, Ruopeng Wang, Jeremy Schmahmann, Van Wedeen, MGH

Tagged: Biomedicine, brain, MRI, diffusion spectrum imaging, cortex

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me