Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Pan filled the pattern with a solution of powdered silver, a nontoxic metal conductor. After polymerization, the silver formed a continuous circuit within the soft polymer. In initial laboratory tests, the team found that voltage within the tiny circuit changes slightly as the polymer is bent. Pan says that measuring this change could provide a good monitor for IOP: as pressure within the eye increases, the shape of the contact lens would distort, causing a change in voltage within the wires. The researchers published their results in the recent issue of the journal Advanced Functional Materials.

“This device is really a breakthrough in real-time IOP monitoring,” says David Calkins, associate professor of ophthalmology at Vanderbilt University Medical Center, who was not involved in the research. “We don’t have a means right now to measure pressure in real time outside of the clinic. Because of that, we are missing the fluctuations in IOP that could be pertinent to the pathogenesis of glaucoma.”

However, several hurdles remain before the prototype can be fashioned into a practical contact lens. In the current version, the silver circuit is opaque and would obviously obstruct vision. Pan says that such a visible circuit could still be used for short-term, sit-down tests in the clinic. However, he is also looking for materials that may be made into transparent circuits, for longer-term use.

Powering the lens also presents a problem. Ideally, Brandt says, a “smart” contact lens would consist of an electrical pressure sensor as well as an RFID tag to wirelessly transmit information to a computer, along with a small battery to power the device. “Getting energy to the device, and pulling information off of it, is not a trivial task,” he says.


4 comments. Share your thoughts »

Credit: Tingrui Pan, UC Davis

Tagged: Biomedicine, eye disease, contact lens, glaucoma

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me