Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo


Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Currently, the only way for patients with glaucoma to keep tabs on the disease is to go to the doctor’s office. There, a clinician administers one of several tests to measure glaucoma’s main risk factor, intraocular pressure (IOP), and prescribes medication accordingly. But such visits normally occur two or three times a year, and there’s no take-home monitoring device for patients who may experience pressure spikes between visits.

Now scientists at the University of California, Davis, have designed a contact-lens prototype with a built-in pressure sensor, using a novel process that etches tiny electrical circuits within a soft polymer material. The lens’s designer, Tingrui Pan, assistant professor of biomedical engineering, says that the design may eventually be fashioned into disposable contact lenses, enabling patients to continuously monitor glaucoma at home.

In glaucoma, drainage of the fluid that normally delivers nutrients to and removes metabolic waste from the eye is blocked. Elevated pressure in the eye ultimately presses on the retina, compromising neural activity and damaging the optic nerve, resulting in loss of vision. Doctors manage glaucoma by measuring patients’ IOP and prescribing drugs to lower it.

“It’s very different from situations like cardiac disease or diabetes, where patients can wear devices that measure heart rate or blood pressure 24 hours a day for a week or more to get a better idea of what’s going on,” says James Brandt, a professor of ophthalmology at UC Davis and Pan’s collaborator. “We don’t have that for glaucoma, and that’s one of the biggest clinical frustrations we have.”

Pan’s team recently made a contact-lens prototype from PDMS, an organic polymer commonly used to make contact lenses and breast implants. “This material has been widely used in biology because it’s easy to work with and can bend and flex like skin,” says Pan. “But the problem is, it’s not conductive, and if you want to make it sensing, it has to be conductive.”

Because it’s difficult to adhere metal wires directly to the polymer’s surface, Pan looked for ways to embed metal within the polymer. He first made the polymer sensitive to ultraviolet (UV) light by mixing it with a chemical agent. When exposed to UV light, the polymer solidifies, forming a soft, rubberlike material. Without UV light, the polymer remains in its liquid form.

The team then created a negative cutout in the pattern of a small circuit and shined UV light through the cutout, onto a layer of polymer mixture. Areas exposed to light gelled, while those under the cutout did not. Researchers were able to easily wash away the liquid polymer, leaving an imprint of a small, nanoscale circuit within the solidified polymer.

4 comments. Share your thoughts »

Credit: Tingrui Pan, UC Davis

Tagged: Biomedicine, eye disease, contact lens, glaucoma

Reprints and Permissions | Send feedback to the editor

From the Archives


Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me