Select your localized edition:

Close ×

More Ways to Connect

Discover one of our 28 local entrepreneurial communities »

Be the first to know as we launch in new countries and markets around the globe.

Interested in bringing MIT Technology Review to your local market?

MIT Technology ReviewMIT Technology Review - logo

 

Unsupported browser: Your browser does not meet modern web standards. See how it scores »

{ action.text }

Diabetes messes with the body’s metabolism, which can result in devastating complications like nerve damage, kidney disease, and vision loss.

By capturing a snapshot of the eye, scientists in Michigan say that they can pick up telltale signs of metabolic stress in the retina caused by diabetes. They say that the new imaging technology may offer a quick, noninvasive way of detecting the disease early and monitoring its progress.

“With just a minute in an optometrist’s office, you might be able to detect metabolic stress in the eye, refer the patient to an endocrinologist, and get a diagnosis,” says Howard Petty, a biophysicist and imaging expert at the University of Michigan’s Kellogg Eye Center and one of the authors of a study that appears in the latest issue of the Archives of Ophthalmology.

The study focused on patients with diabetes, but Petty says that the screening technology should be able to identify people with prediabetes–a condition in which blood glucose levels are higher than normal and that often progresses to full-blown diabetes. The researchers are beginning clinical trials this fall, using the system on diabetics and prediabetics.

“It’s an intriguing idea that you could detect early diabetes by looking for the changes that result from blood sugar, in the eye,” says John Buse, president of Medicine and Science at the American Diabetes Association, who was not involved in the work.

Petty, together with Victor Elner and other colleagues at the University of Michigan, used a sophisticated camera system coupled with customized imaging software to detect fluorescence given off by oxidized proteins in dying cells in the retina. The 21 diabetics in their study had elevated levels of autofluorescence from retinal flavoprotein, compared with healthy age-matched control subjects. Diabetics that had –damage to the retinal tissue that can causes blindness–had even higher levels of fluorescence than diabetics without the condition.

Petty and his colleagues have already used their imaging system to detect pseudotumor cerebri (PTC), a disorder that causes symptoms similar to those of a brain tumor. They also plan to test the system on patients with macular degeneration and glaucoma.

The correlation between elevated autofluorescence and diabetes is “an interesting observation,” says Lois Jovanovic, CEO and chief scientific officer of Sansum Diabetes Research Institute, in Santa Barbara, CA. “But it raises more questions than it answers.” Jovanovic wants more studies to be done, with more data on blood sugar levels in study subjects, to prove that high fluorescence measurements are really a result of metabolic stress and not of fluctuations in blood glucose. She also wants to see the results of eye tests in people with type 1 diabetes compared with the much more common type 2. Petty says that the effects on the eye would be the same.

0 comments about this story. Start the discussion »

Credit: OcuSciences, Inc.

Tagged: Biomedicine, imaging, Diabetes, retina

Reprints and Permissions | Send feedback to the editor

From the Archives

Close

Introducing MIT Technology Review Insider.

Already a Magazine subscriber?

You're automatically an Insider. It's easy to activate or upgrade your account.

Activate Your Account

Become an Insider

It's the new way to subscribe. Get even more of the tech news, research, and discoveries you crave.

Sign Up

Learn More

Find out why MIT Technology Review Insider is for you and explore your options.

Show Me